[JAVA] Desktop: OpenCV Virtual Piano

Goal
Test OpenCV Virtual Piano.

OpenCV_VirtualPiano.java


import org.opencv.core.*;
import org.opencv.core.Point;
import org.opencv.imgproc.Imgproc;
import org.opencv.videoio.VideoCapture;

import javax.sound.midi.MidiChannel;
import javax.sound.midi.MidiSystem;
import javax.sound.midi.Synthesizer;
import javax.swing.*;
import java.awt.*;
import java.util.ArrayList;
import java.util.List;

public class OpenCV_VirtualPiano {

    public static void main(String arg[]) throws Exception{
        // Load the native library.
        System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
        // It is better to group all frames together so cut and paste to
        // create more frames is easier
        JFrame frame1 = new JFrame("Camera");
        frame1.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
        frame1.setSize(640,480);
        frame1.setBounds(0, 0, frame1.getWidth(), frame1.getHeight());
        Panel panel1 = new Panel();
        frame1.setContentPane(panel1);
        frame1.setVisible(true);

        JFrame frame4 = new JFrame("Threshold");
        frame4.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
        frame4.setSize(640,480);
        frame4.setBounds(300,100, frame1.getWidth()+50, 50+frame1.getHeight());
        Panel panel4 = new Panel();
        frame4.setContentPane(panel4);
        frame4.setVisible(true);
        //-- 2. Read the video stream
        VideoCapture capture =new VideoCapture();
        capture.open(0);
        Mat webcam_image=new Mat();
        Mat hsv_image=new Mat();
        Mat thresholded=new Mat();
        Mat thresholded2=new Mat();
        capture.read(webcam_image);
        frame1.setSize(webcam_image.width()+40,webcam_image.height()+60);
        frame4.setSize(webcam_image.width()+40,webcam_image.height()+60);
        Scalar hsv_min = new Scalar(0,10,60);
        Scalar hsv_max = new Scalar(20,150,255);

        Mat subArea=webcam_image.colRange(new Range(0,184)).rowRange(0, 142);
        boolean first=false;

        if( capture.isOpened())
        {
            while( true )
            {
                //Thread.sleep(200);
                if (first==true){
                    first=false;
                }


                capture.read(webcam_image);
                if( !webcam_image.empty() )
                {
                    // One way to select a range of colors by Hue
                    Imgproc.cvtColor(webcam_image, hsv_image, Imgproc.COLOR_BGR2HSV);
                    Core.inRange(hsv_image, hsv_min, hsv_max, thresholded);
                    Imgproc.GaussianBlur(thresholded, thresholded, new Size(15,15), 0, 0);
                    //Imgproc.GaussianBlur(hsv_image, thresholded, new Size(25,35), 0, 0);
                    Mat threshold_output=new Mat(webcam_image.rows(),webcam_image.cols(),CvType.CV_8UC1);
                    Imgproc.threshold(thresholded, threshold_output, 99, 255, Imgproc.THRESH_BINARY);
                    // Imgproc.GaussianBlur(thresholded, thresholded, new Size(15,15), 0, 0);
                    Mat hierarchy = new Mat(thresholded.rows(),thresholded.cols(),CvType.CV_8UC1,new Scalar(0));
                    List<MatOfPoint> contours = new ArrayList<MatOfPoint>();
                    Imgproc.findContours(threshold_output, contours, hierarchy, Imgproc.RETR_LIST, Imgproc.CHAIN_APPROX_SIMPLE);
                    //Imgproc.findContours(threshold_output, contours, hierarchy, Imgproc.RETR_TREE, Imgproc.CHAIN_APPROX_SIMPLE);
                    int s = findBiggestContour(contours);
                    //Mat drawing = Mat::zeros( src.size(), CV_8UC1 );
                    Mat drawing = new Mat(threshold_output.size(),CvType.CV_8UC1);
                    Imgproc.drawContours(drawing, contours,s,new Scalar(255,0,0,255),-1);
                    int[] mConvexityDefectsIntArrayList;
                    int count=0;
                    for(int i=0;i<contours.size();i++){
                        MatOfInt4 mConvexityDefectsMatOfInt4=new MatOfInt4();
                        MatOfInt hull = new MatOfInt();
                        MatOfPoint tempContour=contours.get(i);
                        Imgproc.convexHull(tempContour, hull,false);
                        //System.out.println("hull1:"+hull.size());

                        int index=(int)hull.get(((int)hull.size().height)-1,0)[0];
                        Point pt, pt0 = new Point(tempContour.get(index, 0)[0], tempContour.get(index, 0)[1]);
                        for(int j = 0; j < hull.size().height -1 ; j++){
                            //for(int j = 0; j < 3 ; j++){
                            index = (int) hull.get(j, 0)[0];
                            pt = new Point(tempContour.get(index, 0)[0], tempContour.get(index, 0)[1]);

                            double distance1=Math.sqrt(Math.pow(pt0.x-pt.x, 2)+Math.pow(pt0.y-pt.y, 2));
                            if   (distance1>=30){
                                Imgproc.line(webcam_image, pt0, pt, new Scalar(255, 0, 100), 2);//2 Dicke
                            }
                            // System.out.println("distance-hull-"+j+":" + distance);
                            pt0 = pt;
                        }

                        if(contours.size()>0 && hull.rows()>3){
                            Imgproc.convexityDefects(tempContour, hull, mConvexityDefectsMatOfInt4);


                            //System.out.println( mConvexityDefectsMatOfInt4.height());
                            int index2=(int)mConvexityDefectsMatOfInt4.toArray().length;
                            //System.out.println( "index2="+index2);
                            int index3;

                            if (tempContour.get(index2, 0)!=null) {
                                Point pt3,pt1,old_pt1=null,pt4 = null, pt2= new Point(tempContour.get(index2, 0)[0], tempContour.get(index2, 0)[1]);

                                for(int j = 0; j < mConvexityDefectsMatOfInt4.size().height -1 ; j++){
                                    //for(int j = 0; j < 3 ; j++){
                                    index2 = (int) mConvexityDefectsMatOfInt4.get(j, 0)[0];//0 Ja top Sofortige Fingerspitze,2 runter,Der Boden des Schwertes
                                    index3 = (int) mConvexityDefectsMatOfInt4.get(j, 0)[2];
                                    pt1 = new Point(tempContour.get(index2, 0)[0], tempContour.get(index2, 0)[1]);//Spitz
                                    pt3 = new Point(tempContour.get(index3, 0)[0], tempContour.get(index3, 0)[1]);//Unterseite




                                    Imgproc.line(webcam_image, pt1, pt1, new Scalar(0, 255, 0), 5);
                                    Imgproc.line(webcam_image, pt3, pt3, new Scalar(150, 155, 260), 5);
                                    //
                                    double distance1=Math.sqrt(Math.pow(pt1.x-pt3.x, 2)+Math.pow(pt1.y-pt3.y, 2));

                                    if(pt4!=null&&old_pt1!=null){
                                        double distance2=Math.sqrt(Math.pow(pt1.x-pt4.x, 2)+Math.pow(pt1.y-pt4.y, 2));
                                        if (distance2>15){
                                            //count++;
                                            Imgproc.line(webcam_image, pt1, pt4, new Scalar(220, 0, 255), 2);
                                        }
                                        if (distance1>15){
                                            //count++;
                                            Imgproc.line(webcam_image, pt1, pt3, new Scalar(220, 0, 255), 2);
                                        }

                                        // if (getAngle(pt1,pt4,pt3)>20 && getAngle(pt1,pt4,pt3)<81){
                                        if (getAngle(pt1,pt4,old_pt1)>20 && getAngle(pt1,pt4,old_pt1)<84){
                                            //Abstandsdicke Nachteile Konstitutiver Winkel nicht berechnet
                                            if (getDistance(pt1,pt4)>25 && getDistance(pt4,old_pt1)>25){
                                                Imgproc.putText(webcam_image, getAngle(pt1,pt4,old_pt1)+"", pt4, 0, 0.3, new Scalar(0, 0, 0));
                                                //System.out.println("There ang :"+getAngle(pt1,pt4,pt3));

                                                System.out.println("L1:"+getDistance(pt1,pt4)+",L2:"+getDistance(old_pt1,pt4));
                                                count++;
                                            }
                                        }

                                        //System.out.println("There ang :"+getAngle(pt1,pt4,pt3));

                                    }
                                    //System.out.println("distance-"+j+":" + distance1);

                                    //System.out.println("There r :"+count);
                                    Imgproc.rectangle(webcam_image, new Point(5,5), new Point(92,136), new Scalar(120, 0, 125),3);
                                    Mat firstArea=webcam_image.colRange(new Range(1,96)).rowRange(1, 142);
                                    Imgproc.rectangle(webcam_image, new Point(97,5), new Point(184,136), new Scalar(120, 0, 125),3);
                                    Mat secondArea=webcam_image.colRange(new Range(97,186)).rowRange(1, 142);

                                    Rect firstRect=new Rect(0,0,92,136);
                                    Rect secondRect=new Rect(97
                                            ,0,184,136);
                                    //Core.rectangle(webcam_image, new Point(100,300), new Point(250,450), new Scalar(250, 250, 250),2);
                                    if (firstRect.contains(pt1)){
                                        System.out.println("YES1");

                                        if (!first){
                                            playSound(60);
                                        }
                                        first=true;
                                        //new Thread(new PlaySound(60)).start();
                                    }
                                    if (secondRect.contains(pt1)){
                                        System.out.println("YES2");

                                        if (!first){
                                            playSound(64);
                                        }
                                        first=true;

                                    }


                                    pt4 = pt3;
                                    old_pt1=pt1;



                                }

                            }


                        }




                    }




                    //Core.addWeighted(webcam_image, 0.3, firstArea, 0.7, 1.4, firstArea);
                    //Core.add(webcam_image, firstArea,  firstArea);//Ryo 變 很
                    panel1.setimagewithMat(webcam_image);
                    panel4.setimagewithMat(subArea);  //
                    frame1.repaint();
                    frame4.repaint();
                }
                else
                {
                    System.out.println(" --(!) No captured frame -- Break!");
                    break;
                }
            }
        }
        return;
    }
    public static int findBiggestContour(List<MatOfPoint> contours){
        int indexOfBiggestContour = -1;
        int sizeOfBiggestContour = 0;
        for (int i = 0; i < contours.size(); i++){
            if(contours.get(i).height() > sizeOfBiggestContour){
                sizeOfBiggestContour = contours.get(i).height();
                indexOfBiggestContour = i;
            }
        }
        return indexOfBiggestContour;
    }

    public static double getAngle(Point a, Point b, Point c){
        double line1=Math.sqrt(Math.pow(a.x-b.x, 2)+Math.pow(a.y-b.y, 2));
        double line2=Math.sqrt(Math.pow(c.x-b.x, 2)+Math.pow(c.y-b.y, 2));
        double dot=(a.x-b.x)*(c.x-b.x)+(a.y-b.y)*(c.y-b.y);
        double angle=Math.acos(dot/(line1*line2));
        angle=angle*180/Math.PI;
        return Math.round(100*angle)/100;

    }
    public static double getDistance(Point a,Point b){
        //return Math.round(Math.sqrt(Math.pow(a.x-b.x, 2)+Math.pow(a.y-b.y, 2)*100)/100);
        return Math.sqrt(Math.pow(a.x-b.x, 2)+Math.pow(a.y-b.y, 2));
    }

    public static void playSound(int meldy){
        int channel = 0; // 0 is a piano, 9 is percussion, other channels are for other instruments

        int volume = 80; // between 0 et 127
        int duration = 200; // in milliseconds

        try {
            Synthesizer synth = MidiSystem.getSynthesizer();
            synth.open();
            MidiChannel[] channels = synth.getChannels();

            channels[channel].noteOn( meldy, volume ); // C note
            Thread.sleep( duration );
            channels[channel].noteOff( meldy );
            Thread.sleep( 400 );
            synth.close();
        }
        catch (Exception e) {
            e.printStackTrace();
        }



    }
}
Result
![opencv_vitrual_piano.JPG](https://qiita-image-store.s3.ap-northeast-1.amazonaws.com/0/276243/a2975086-6398-1f62-4698-272108630615.jpeg)

Recommended Posts

Desktop: OpenCV Virtual Piano
Desktop: OpenCV-Schwellenwert
Desktop: OpenCV BilateralFilterBlur
Desktop: OpenCV Dilate
Desktop: OpenCV-Erweiterung
Desktop: OpenCV Emboss
Desktop: OpenCV CLAHE
Desktop: OpenCV Ellipse2Poly
Desktop: OpenCV HDR
Desktop: OpenCV-Polylinien
Desktop: OpenCV Denoise
Desktop: OpenCV-Schärfe
Desktop: OpenCV Concat
Desktop: OpenCV OpenCV_SalonUseBlurAddWeighted
Desktop: OpenCV-Mosaik
Desktop: OpenCV Erode
Desktop: OpenCV Denoise
Desktop: OpenCV-Rechteck
Desktop: OpenCV-Wasserscheide
Desktop: OpenCV-Text
Desktop: OpenCV Inpaint
Desktop: OpenCV NormalizeBlur
Desktop: OpenCV StereoSGBM
Desktop: OpenCV Spot
Desktop: OpenCV Canny
Desktop: OpenCV Denoise3
Desktop: OpenCV-Histogramm
Desktop: OpenCV Dft
Desktop: OpenCV Decolor
Desktop: OpenCV FaceDetector
Desktop: OpenCV Denoise2
Desktop: OpenCV StereoBM
Desktop: OpenCV Kirsch Filter
Desktop: OpenCV Laplace Filter 2
Desktop: OpenCV-Beleuchtungsänderung
Desktop: OpenCV Fill ConvexPoly
Desktop: OpenCV Grab Cut
Desktop: OpenCV-Farbänderung
Desktop: OpenCV Freichennel Filter
Desktop: OpenCV Adaptive Threshold
Desktop: OpenCV-Zeichnungskreis
Desktop: OpenCV Fill Poly
Desktop: OpenCV-Mittelwertfilter
Desktop: OpenCV Java Repository
Desktop: OpenCV Sobel Filter2
Desktop: OpenCV pyrMeanShift Filter
Desktop: OpenCV OpticalFlow PyrLK
Desktop: OpenCV-Bild zusammenführen
Desktop: OpenCV Scharr Filter
Desktop: Opencv-Webcam-Vorschau
Desktop: OpenCV-Laplace-Filter
Desktop: OpenCV Median Blur
Desktop: OpenCV Add Broad
Desktop: OpenCV Robinson Filter
Desktop: OpenCV-Videoaufzeichnung
Desktop: OpenCV Texture Flatting
Desktop: OpenCV Flood Fill
Desktop: OpenCV-Farbraum
Desktop: OpenCV SqrBox Filter
Desktop: OpenCV-Bildgröße ändern
Desktop: OpenCV-Stiftskizze