Numpy random module random number generator

Introduction

Numpy has a random module that makes it easy to generate random numbers. This time, I will introduce how to use the random module.

Preparation

First, import numpy.

>>> import numpy as np

Random number generation algorithm

Now, let me introduce the algorithms that can be generated by the random module.

Uniform random number

>>> #Output one uniform random number
>>> np.random.rand()
0.5880118049738298

>>> #Output uniform random numbers to any number(Example: 3)
>>> np.random.rand(3)
array([ 0.44895901,  0.39833764,  0.99688209])

>>> #Output uniform random numbers in any dimension and any number(Example: 3x4 two-dimensional matrix)
>>> np.random.rand(3, 4)
array([[ 0.0526965 ,  0.01470381,  0.33005156,  0.14598275],
       [ 0.41548295,  0.69093009,  0.78780918,  0.4854191 ],
       [ 0.89098149,  0.23846317,  0.49385737,  0.54687586]])

Normal random number

Outputs random numbers that follow a normal distribution.

>>> #General format
>>> # np.random.normal(average,Distributed,Number of outputs)

>>> #Example 1: Output one standard normal random number
>>> np.random.normal()
1.822075035860751

>>> #Example 2: Average 10,Output a random number that follows a normal distribution with variance 20 as a 3x4 matrix
>>> np.random.normal(10, 20, (3, 4))
array([[ 30.20657691,   9.14586262,  37.53208038,  -7.07276197],
       [  2.72797326,  47.43580065,  -4.09493013,  20.48477033],
       [ 13.32781396, -10.19972429,  24.45599633,  -6.52998571]])

It is also possible to generate random numbers with distributions other than the normal distribution (see Resources at the bottom).

Integer random number

>>> #General form
>>> # np.random.randint(lower limit,upper limit,Number of outputs)

>>> #Example 1: 0~Output one integer between 5
>>> np.random.randint(5)
2

>>> #Example 2:10-Output integers between 100 as a 3x4 matrix
>>> np.random.randint(10, 100, (3, 4))
array([[70, 34, 20, 82],
       [90, 78, 38, 71],
       [15, 73, 63, 53]])

Shuffle the list

>>> #General form
>>> # np.random.shuffle(Array)

>>> #Example 1: Shuffle a one-dimensional array
>>> arr1 = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I']
>>> np.random.shuffle(arr)
>>> arr1
['E', 'H', 'C', 'I', 'D', 'B', 'G', 'A', 'F']

>>> #Example 2: Shuffle a two-dimensional array(The outermost part is shuffled)
>>> arr2 = [['A', 'B', 'C'], ['D', 'E', 'F'], ['G', 'H', 'I']]
>>> np.random.shuffle(arr2)
>>> arr2
[['G', 'H', 'I'], ['A', 'B', 'C'], ['D', 'E', 'F']]

Random number specification

Random numbers generated by seed can be specified.

>>> np.random.seed(10)
>>> np.random.rand()
0.771320643266746

>>> np.random.seed(10)
>>> np.random.rand()
0.771320643266746

>>> np.random.seed(11)
>>> np.random.rand()
0.1802696888767692

References

Recommended Posts

Numpy random module random number generator
random French number generator with python
Random number generation summary by Numpy
Natural number generator
numpy> Random number list output> zip () / print%
Random number generator with normal distribution N (0,1)
I made a random number graph with Numpy
[Note] Random number creation?
[python] Random number generation memorandum
Random number seed fixed in TensorFlow and Numpy A little different
Infinite prime number generator in Python3
Pseudo-random number generation and random sampling
Difference between Numpy randint and Random randint
Sort names with Python's random module
Non-overlapping integer random number generation (0-N-1)
Create a 1MByte random number file
Python My Number verification module released