[Optimization problem] Optuna vs Hyperopt

Introduction

Optimization frameworks include Optuna </ font> and Hyperopt </ font>. I was wondering which one was better, so I will compare it using the function optimization problem. The two frameworks are introduced in a separate article, so please refer to that. Try function optimization using Optuna Try function optimization using Hyperopt

Comparative experiment

This time

x^2+y^2+z^2

We will optimize the minimization problem of. The results will be different for each trial, so I'll try three times.

code

The code used for the experiment this time is as follows.

# -*- coding: utf-8 -*-
import optuna
import hyperopt
from hyperopt import hp
from hyperopt import fmin
from hyperopt import tpe
from hyperopt import Trials
import matplotlib.pyplot as plt

#Set objective function for optuna(This time x^2+y^2+z^2)
def objective_optuna(trial):
    #Set parameters to optimize
    param = {
        'x': trial.suggest_uniform('x', -100, 100),
        'y': trial.suggest_uniform('y', -100, 100),
        'z': trial.suggest_uniform('z', -100, 100)
    }
    #Returns the evaluation value(It is designed to be minimized by default)
    return param['x'] ** 2 + param['y'] ** 2 + param['z'] ** 2

#Optimized with optuna
def optuna_exe():
    #study object creation
    study = optuna.create_study()
    #Optimization execution
    study.optimize(objective_optuna, n_trials=500)
    #Best parameter display
    print(study.best_params)
    #Show best objective function value
    print(study.best_value)

    epoches = []    #For storing the number of trials
    values = []    #For storing the best value
    best = 100000
    #best update
    for i in study.trials:
        if best > i.value:
            best = i.value
        epoches.append(i.number + 1)
        values.append(best)
    return epoches, values

#Set objective function for hyperopt
def objective_hyperopt(args):
    x, y, z = args
    return x ** 2 + y ** 2 + z ** 2

#Optimized with hyperopt
def hyperopt_exe():
    #Search space settings
    space = [
        hp.uniform('x', -100, 100),
        hp.uniform('y', -100, 100),
        hp.uniform('z', -100, 100)
    ]
    #An object for recording the state of the search
    trials = Trials()
    #Start exploration
    best = fmin(objective_hyperopt, space, algo=tpe.suggest, max_evals=500, trials=trials)
    #Output the result
    print(best)
    epoches = [] #For storing the number of trials
    values = [] #For storing the best value
    best = 100000
    #best update
    for i, n in zip(trials.trials, range(500)):
        if best > i['result']['loss']:
            best = i['result']['loss']
        epoches.append(n+1)
        values.append(best)

    return epoches, values

def plot_graph():
    result_optuna = optuna_exe()
    result_hyperopt = hyperopt_exe()
    epoch_optuna = result_optuna[0]
    value_optuna = result_optuna[1]
    epoch_hyperopt = result_hyperopt[0]
    value_hyperopt = result_hyperopt[1]

    #Drawing a graph
    fig, ax = plt.subplots()
    ax.set_xlabel("trial")
    ax.set_ylabel("value")
    ax.set_title("Optuna vs Hyperopt")
    ax.grid() #Insert grid lines
    ax.plot(epoch_optuna, value_optuna, color="red", label="Optuna")
    ax.plot(epoch_hyperopt, value_hyperopt, color="blue", label="Hyperopt")
    ax.legend(loc=0) #Usage Guide
    plt.show() #graph display

if __name__ == '__main__':
    plot_graph()

First experimental result

Optuna: 'x': 0.2690396239515218, 'y': -1.75236444646743, 'z': 0.3724308175904496, best_value:3.2818681863901693

Hyperopt: 'x': -2.9497423868903834, 'y': 0.13662455602710644, 'z': -3.844496541052724, best_value:23.499800072493738 Figure_1.png

Optuna is excellent in the final best_value. It seems that Optuna is superior to the graph in terms of convergence speed.

Second experiment result

Optuna: 'x': 0.7811129871251672, 'y': 0.4130867942356189, 'z': 0.6953642534092288, best_value:1.2643096431468364

Hyperopt: 'x': -3.7838067947126675, 'y': -2.595648793357423, 'z': -2.683504623035553, best_value:28.255783580024783 Figure_2.png

Is Optuna superior in terms of final best_value and convergence speed in the second time as well as the first time?

Experimental result 3rd

Optuna: 'x': -0.19339325990518663, 'y': -0.0030977352573082623, 'z': 0.4961595538587318, best_value:0.2835848518257752

Hyperopt: 'x': 2.810074634010315, 'y': -1.2603362587820195, 'z': -0.7356174272489406, best_value:10.026099933181214 Figure_3.png

Optuna was superior in the final best_value value for the third time as well. I feel that the convergence speed does not change much.

Conclusion

We came to the conclusion that Optuna is superior in terms of final best objective function value and convergence speed. If we make the optimization problem a little more difficult, will it make a big difference ...

Recommended Posts