Introduction to Statistical Modeling for Data Analysis Expanding the range of applications of GLM

We deal with offset term works of logistic regression and Poisson regression, and GLM using normal distribution and gamma distribution.

GLM to which various types of data can be applied

Various types of data can be represented by GLM by combining probability distributions, link functions, and linear predictors.

Part of the probability distribution that can be used to build GLM in Python Random number generation is specified by scipy.stats.X, and glm () family is specified by statsmodels.api.families.X.

Probability distribution Random number generation glm()Family designation Frequently used link functions
(Discrete) Binomial distribution binom.rvs() Binomial() logit
Poisson distribution poisson.rvs() Poisson() log
Negative binomial distribution nbinom.rvs() NegativeGaussian() log
(Continuous) Gamma distribution gamma.rvs() Ganma() log?
normal distribution norm.rvs() Gaussian() identity

GLM with binomial distribution

The binomial distribution is used when ** count data with an upper limit ** (response variable is $ y \ in \ {0, 1, 2, \ dots, N \} $).

When the same treatment was applied to the experimental subjects of N individuals, the reaction was positive in $ y $ individuals and negative in $ N-y $ individuals.

This example is

"For each $ i $ of a fictitious plant, $ y_i $ of live and germinated seeds and $ N_i-y_i $ of dead seeds of $ N_i $ observed seeds."

Suppose that a total of 100 plants were investigated using the observation data.

About response variables

The possible value of the number of surviving seeds, which is the response variable, is $ y_i \ in \ {0, 1, 2, 3, \ dots, 8 \} $. If all are alive, $ y_i = 8 $, and if all the meanings are dead, $ y_i = 0 $.

Let $ q_i $ be the "probability that one seed obtained from a certain individual $ i $ is alive".

About explanatory variables

The survival probability $ q_i $ fluctuates depending on the body size $ x_i , which represents the size of the individual. In addition, 50 out of 100 individuals ( i \ in \ {1, 2, \ dots, 50 \} ) are unprocessed ( f_i = C ), The remaining 50 individuals ( i \ in \ {51, 52, \ dots, 100 \} ) are fertilized ( f_i = T $).

>>> import pandas
>>> import matplotlib.pyplot as plt
>>> d = pandas.read_csv("data4a.csv")
>>> d.describe()
         N           y           x
count  100  100.000000  100.000000
mean     8    5.080000    9.967200
std      0    2.743882    1.088954
min      8    0.000000    7.660000
25%      8    3.000000    9.337500
50%      8    6.000000    9.965000
75%      8    8.000000   10.770000
max      8    8.000000   12.440000
>>> plt.plot(d.x[d.f == 'C'], d.y[d.f == 'C'], 'bo')
>>> plt.plot(d.x[d.f == 'T'], d.y[d.f == 'T'], 'ro')
>>> plt.show()

Screen Shot 2015-06-06 at 00.18.47.png

As you can see from the figure

--It seems that the number of surviving seeds $ y_i $ increases as the body size $ x_i $ increases. --It seems that fertilizer ($ f_i = T $) will increase the number of surviving seeds $ y_i $.

Binomial distribution

p(y|N, q) = \left( \begin{array}{c}
      N \\
      y 
    \end{array}
    \right) q^y (1-q)^{N-y}
>>> import math
>>> p = lambda y, N, q: (math.factorial(N) / (math.factorial(y) * math.factorial(N-y))) * (q ** y) * ((1-q) ** (N-y))
>>> p1 = [p(i, 8, 0.1) for i in y]
>>> p2 = [p(i, 8, 0.3) for i in y]
>>> p3 = [p(i, 8, 0.8) for i in y]
>>> plt.plot(y, p1, 'b-o')
>>> plt.plot(y, p2, 'r-o')
>>> plt.plot(y, p3, 'g-o')
>>> plt.show()

Screen Shot 2015-06-06 at 10.34.58.png

Logistic regression and logit link functions

In logistic regression

--Probability distribution: ** Binomial distribution ** --Link function: ** logit link function **

Is used.

About ** logistic function **

q_i = logistic(z_i) = \frac{1}{1+\exp(-z_i)}

The variable $ z_i $ is the linear predictor $ z_i = \ beta_1 + \ beta_2 x_1 + \ dots $.

>>> logistic = lambda z: 1 / (1 + numpy.exp(-z))
>>> z = numpy.arange(-6, 6, 0.1)
>>> plt.plot(z, logistic(z))
>>> plt.show()

Screen Shot 2015-06-06 at 10.50.15.png

Assuming that the survival probability $ q_i $ is a logistic function of $ z_i $, any value of the linear predictor $ z_i $ will be $ 0 \ leq q_i \ leq 1 $.

Assuming that the survival probability $ q_i $ depends only on the body size $ x_i $, we have the linear predictor $ z_i = \ beta_1 + \ beta_2 x_i $.

$ Q_i $ and $ x_i $ depend on $ \ beta_1 $ and $ \ beta_2 $

>>> plt.subplot(121)
>>> logistic = lambda x: 1 / (1 + numpy.exp(-(0 + 2 * x)))
>>> plt.plot(z, logistic(z), 'b-', label='beta1=0')
>>> logistic = lambda x: 1 / (1 + numpy.exp(-(2 + 2 * x)))
>>> plt.plot(z, logistic(z), 'r-', label='beta1=2')
>>> logistic = lambda x: 1 / (1 + numpy.exp(-(-3 + 2 * x)))
>>> plt.plot(z, logistic(z), 'g-', label='beta1=-3')
>>> plt.legend(loc='middle right')
>>> plt.subplot(122)
>>> logistic = lambda x: 1 / (1 + numpy.exp(-(2 * x)))
>>> plt.plot(z, logistic(z), 'b-', label='beta2=2')
>>> logistic = lambda x: 1 / (1 + numpy.exp(-(4 * x)))
>>> plt.plot(z, logistic(z), 'r-', label='beta2=4')
>>> logistic = lambda x: 1 / (1 + numpy.exp(-(-1 * x)))
>>> plt.plot(z, logistic(z), 'g-', label='beta2=-1')
>>> plt.legend(loc='middle right')
>>> plt.show()

Screen Shot 2015-06-06 at 11.18.09.png

Logit function

Transform the logistic function.

\begin{eqnarray}
q_i &=& \frac{1}{1+\exp(-z_i)} \\
q_i + q_i \exp(-z_i) &=& 1 \\
1 - q_i &=& q_i \exp (-z_i)\\
\frac{1 - q_i}{q_i} &=& \exp (-z_i) \\
\log \frac{1 - q_i}{q_i} &=& -z_i \\
\log \frac{q_i}{1 - q_i} &=& z_i
\end{eqnarray}

The left side is called the ** logit function **.

logit(q_i) = \log \frac{q_i}{1 - q_i}

Parameter estimation

Maximize the (logarithmic) likelihood under the survival probability $ q_i $.

\begin{eqnarray}
L(q) &=& \prod_i p(y_i | N_i, q_i) \\
&=& \prod_i \left( \begin{array}{c}
      N_i \\
      y_i 
    \end{array}
    \right)q_i^{y_i}(1-q_i)^{N_i-y_i} \\
L(\{\beta_1, \beta_2, \beta_3\}) &=& \prod_i \left( \begin{array}{c}
      N_i \\
      y_i 
    \end{array}
    \right)q_i^{y_i}(1-q_i)^{N_i-y_i} (\because logit(q_i) = z_i = \beta_1 + \beta_2 x_i + \beta_3 d_i) \\
logL(\{\beta_1, \beta_2, \beta_3\}) &=& \sum_i \log \left\{\left( \begin{array}{c}
      N_i \\
      y_i 
    \end{array}
    \right)q_i^{y_i}(1-q_i)^{N_i-y_i} \right\} \\

logL(\{\beta_1, \beta_2, \beta_3\}) &=& \sum_i \left\{ \log \left( \begin{array}{c}
      N_i \\
      y_i 
    \end{array}
    \right) + \log q_i^{y_i} + \log (1-q_i)^{N_i-y_i} \right\} \\

logL(\{\beta_1, \beta_2, \beta_3\}) &=& \sum_i \left\{ \log \left( \begin{array}{c}
      N_i \\
      y_i 
    \end{array}
    \right) + (y_i)\log q_i + (N_i-y_i)\log (1-q_i) \right\} \\
\end{eqnarray}
>>> import statsmodels.formula.api as smf
>>> import statsmodels.api as sm
>>> import pandas
>>> d = pandas.read_csv("data4a.csv")
# glm(cbind(y, N-y) ~ x + f, data=d, family=binomial)
>>> model = smf.glm('y + I(N-y) ~ x + f', data=d, family=sm.families.Binomial())
>>> fit = model.fit()
>>> fit.summary()
                 Generalized Linear Model Regression Results
==============================================================================
Dep. Variable:      ['y', 'I(N - y)']   No. Observations:                  100
Model:                            GLM   Df Residuals:                       97
Model Family:                Binomial   Df Model:                            2
Link Function:                  logit   Scale:                             1.0
Method:                          IRLS   Log-Likelihood:                -133.11
Date:                Sat, 06 Jun 2015   Deviance:                       123.03
Time:                        12:06:47   Pearson chi2:                     109.
No. Iterations:                     8
==============================================================================
                 coef    std err          z      P>|z|      [95.0% Conf. Int.]
------------------------------------------------------------------------------
Intercept    -19.5361      1.414    -13.818      0.000       -22.307   -16.765
f[T.T]         2.0215      0.231      8.740      0.000         1.568     2.475
x              1.9524      0.139     14.059      0.000         1.680     2.225
==============================================================================

Screen Shot 2015-06-06 at 12.56.03.png

About odds

The ratio of (probability of survival) / (probability of non-survival) is called ** odds **.

\begin{eqnarray}
\frac{q_i}{1-q_i} &=& \exp(Linear predictor) \\
&=& \exp(\beta_1 + \beta_2 x_i + \beta_3 f_i) \\
&=& \exp(\beta_1)\exp(\beta_2 x_i)\exp(\beta_3 f_i)
\end{eqnarray}

Focusing on the $ \ {\ beta_2, \ beta_3 \} $ estimated this time

\frac{q_i}{1-q_i} \propto \exp(1.95x_i)\exp(2.02f_i)

And each explanatory variable have a proportional relationship.

The effect of body size $ x_i $ is

\begin{eqnarray}
\frac{q_i}{1-q_i} &\propto& \exp(1.95(x_i + 1))\exp(2.02f_i) \\
&\propto& \exp(1.95x_i)\exp(1.95)\exp(2.02f_i)
\end{eqnarray}

It can be seen from that $ \ exp (1.95) \ approach 7.03 $ times. Similarly, it can be seen that the fertilizer application effect is $ exp (2.02) \ approx 7.54 $ times.

About odds ratio

The effect of factor $ X $ ($ \ beta_x = 1.95 $) is shown.

\begin{eqnarray}
\frac{X odds}{非X odds} &=& \frac{\exp(X\bullet Non-X intersection)\times \exp(1.95 \times 1)}{\exp(X\bullet Non-X intersection)\times \exp(1.95 \times 0)} \\
&=& exp(1.95) \approx 7.03
\end{eqnarray}

Model selection

Model selection by AIC Selection of nested models for logistic regression

--Constant model (intercept only) --x model (body size only) --f model (fertilization effect only) --x + f model (body size + fertilizer application effect)

It seems that R has the stepAIC () function of the MASS package. For the time being, if the same as the last time, the x + f model has the lowest AIC and is a good model.

Interaction term

Consider the effect of multiplying the body size and the fertilizer application effect. In other words

logit(q_i) = \beta_1 + \beta_2 x_i + \beta_3 f_i + \beta_4 x_i f_i

think of.

# glm(cbind(y, N-y) ~ x * f, data=d, family=binomial)
>>> model = smf.glm('y + I(N-y) ~ x * f', data=d, family=sm.families.Binomial())
>>> model.fit().summary()
                 Generalized Linear Model Regression Results
==============================================================================
Dep. Variable:      ['y', 'I(N - y)']   No. Observations:                  100
Model:                            GLM   Df Residuals:                       96
Model Family:                Binomial   Df Model:                            3
Link Function:                  logit   Scale:                             1.0
Method:                          IRLS   Log-Likelihood:                -132.81
Date:soil, 06  6 2015   Deviance:                       122.43
Time:                        13:44:31   Pearson chi2:                     13.6
No. Iterations:                     8
==============================================================================
                 coef    std err          z      P>|z|      [95.0% Conf. Int.]
------------------------------------------------------------------------------
Intercept    -18.5233      5.335     -3.472      0.001       -28.979    -8.067
f[T.T]        -0.0638      7.647     -0.008      0.993       -15.052    14.924
x              1.8525      0.525      3.529      0.000         0.824     2.881
x:f[T.T]       0.2163      0.792      0.273      0.785        -1.336     1.769
==============================================================================

This time, the AIC went up, so there was no interaction.

Stop statistical modeling of division values

One of the merits of logistic regression is that it is not necessary to create a division value of $ (observation data) / (observation data) $. The division place tends to be created when you want to know "what the survival probability of seeds depends on" in this example.

As a disadvantage

-** Information is lost : Baseball batting average as an example. 300 hits in 1000 at bats and 30 hits in 100 at bats are both 30% hitters, but can we say that they are equally certain? - What is the distribution of the converted values? **: What probability distribution does the division value created by the quantities with errors follow?

Offset term work that does not require a division value

Use fictitious data such as

--100 survey sites have been set up around the forest ($ i \ in \ {1, 2, \ dots, 100 \} $) --The area $ A_i $ is different for each survey site $ i $ --Measuring the "brightness" $ x_i $ of the survey site $ i $ --Recorded the number of plant populations $ y_i $ at the survey site $ i $ -(Purpose of analysis) I would like to know how the "population density" of individual plants at the survey site $ i $ is affected by "brightness" $ x_i $.

The population density at the survey site $ i $, which has an area of $ A_i $, is

\frac{Average population\lambda_i}{A_i} =Population density

Is. Population density is a positive quantity, so combine the exponential function with the brightness $ x_i $ dependence,

\begin{eqnarray}
\lambda_i &=& A_i \times Population density\\
&=& A_i \exp(\beta_1 + \beta_2 x_i) \\
&=& \exp(\beta_1 + \beta_2 x_i + \log A_i)
\end{eqnarray}

Therefore, it becomes a GLM of the logarithmic link function Poisson distribution with $ z_i = \ beta_1 + \ beta_2 x_i + \ log A_i $ as the linear predictor.

>>> d = pandas.read_csv("data4b.csv")
>>> model = smf.glm('y ~ x', offset=numpy.log(d.A), data=d, family=sm.families.Poisson())
>>> model.fit().summary()
                 Generalized Linear Model Regression Results
==============================================================================
Dep. Variable:                      y   No. Observations:                  100
Model:                            GLM   Df Residuals:                       98
Model Family:                 Poisson   Df Model:                            1
Link Function:                    log   Scale:                             1.0
Method:                          IRLS   Log-Likelihood:                -323.17
Date:                Sat, 06 Jun 2015   Deviance:                       81.608
Time:                        14:45:24   Pearson chi2:                     81.5
No. Iterations:                     7
==============================================================================
                 coef    std err          z      P>|z|      [95.0% Conf. Int.]
------------------------------------------------------------------------------
Intercept      0.9731      0.045     21.600      0.000         0.885     1.061
x              1.0383      0.078     13.364      0.000         0.886     1.191
==============================================================================

Normal distribution and its likelihood

Probability distribution for handling continuous value data in a statistical model. It is also called ** Gaussian distribution **.

The parameters are

--Mean value $ \ mu $: Can be changed freely within the range of $ \ pm \ infinity $. --Standard deviation $ \ sigma $: Data variation can be specified.

p(y| \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma^2}}\exp \left\{ -\frac{(y-\mu)^2}{2\sigma^2} \right\}
# y <- seq(-5, 5, 0.1)
# plot(y, dnorm(y, mean=0, sd=1), type="l")
plt.subplot(131)
plt.plot(y, sct.norm.pdf(y, loc=0, scale=1))
plt.title('$\mu=0, \sigma=1$')
plt.subplot(132)
plt.plot(y, sct.norm.pdf(y, loc=0, scale=3))
plt.title('$\mu=0, \sigma=3$')
plt.subplot(133)
plt.plot(y, sct.norm.pdf(y, loc=2, scale=1))
plt.title('$\mu=2, \sigma=1$')
plt.show()

In R, $ \ mu $ is mean and $ \ sigma $ is sd. In python, $ \ mu $ is loc and $ \ sigma $ is scale.

Screen Shot 2015-06-06 at 18.42.33.png

Each parameter is adjusted. The vertical axis shows ** probability density **. The area painted in red is represented by the magnitude of the probability of becoming $ 1.2 \ leq y \ leq 1.8 $.

Let $ p (y | \ mu, \ sigma) $ be the probability density function of the normal distribution.

$p(1.2 \leq y \leq 1.8| \mu, \sigma) = \int_{1.2}^{1.8}p(y| \mu, \sigma)dy 
#Cumulative distribution
# pnorm(1.8, 0, 1) - pnorm(1.2, 0, 1)
>>> sct.norm.cdf(1.8, 0, 1) - sct.norm.cdf(1.2, 0, 1)
0.079139351108782452

Since the probability is an area, it is approximated as a rectangle. In this case, if the height is $ p (y = 1.5 | 0, 1) $ and the width is $ \ Delta y = 1.8-1.2 = 0.6 $,

#Probability density
# dnorm(1.5, 0, 1) * 0.6
>>> sct.norm.pdf(1.5, 0, 1) * 0.6
0.077710557399535043

It can be seen that the approximation is made.

Maximum likelihood estimation

Based on $ probability = probability density function \ times \ Delta y $.

Let the height data of a human group of $ N $ be $ {\ bf Y} = \ {y_i \} $. The probability that a $ y_i $ is $ y_i-0.5 \ Delta y \ leq y_i \ leq y_i + 0.5 \ Delta y $ is the probability density function $ p (y_i | 0, 1) $ and the interval width $ \ Delta y $. Because it can be approximated as a seat of The (logarithmic) likelihood function of a statistical model using a normal distribution is.

\begin{eqnarray}
L(\mu, \sigma) &=& \prod_i p(y_i|\mu, \sigma)\times \Delta y \\
&=& \prod_i \frac{1}{\sqrt{2\pi\sigma^2}}\exp \left\{ -\frac{(y-\mu)^2}{2\sigma^2}\right\}  \Delta y \\
log L(\mu, \sigma) &=& \sum_i \left\{-\log \sqrt{2\pi\sigma^2} + \log \Delta y - \frac{(y-\mu)^2}{2\sigma^2}    \right\} \\
&=& -0.5N\log(2\pi\sigma^2) + N\log \Delta y - \frac{1}{2\sigma^2}\sum_i (y-\mu)^2
\end{eqnarray}

It becomes. Note that $ \ Delta y $ is a constant and does not affect the parameter $ \ {\ mu, \ sigma \} $. Ignore the above equation. Therefore,

log L(\mu, \sigma) = -0.5N\log(2\pi\sigma^2)  - \frac{1}{2\sigma^2}\sum_i (y-\mu)^2

It becomes.

Gamma distribution GLM

** Gamma distribution ** is a continuous probability distribution in which the range of random variables is 0 or more. The probability density function is.

p(y|s, r) = \frac{r^s}{\Gamma(s)}y^{s-1}\exp(-ry) 

$ s $ is the shape parameter, $ r $ is the rate parameter, $ \ frac {1} {r} $ is the scale parameter, and $ \ Gamma (s) $ is the gamma function. The mean is $ \ frac {s} {r} $ and the variance is $ \ frac {s} {r ^ 2} $. Also, when $ s = 1 $, it becomes ** exponential distribution **.

# dgamma(y, shape, rate)
# 1/rate = scale
>>> y = numpy.arange(0, 5, 0.05)
>>> plt.subplot(131)
>>> plt.plot(y, sct.gamma.pdf(y, a=1, scale=1))
>>> plt.title('$s=1, scale=1/r=1$')
>>> plt.fill_between(numpy.arange(1.2, 1.8, 0.05), sct.gamma.pdf(numpy.arange(1.2, 1.8, 0.05), a=1, scale=1), color='r')
>>> plt.subplot(132)
>>> plt.plot(y, sct.gamma.pdf(y, a=5, scale=0.2))
>>> plt.title('$s=5, scale=1/r=1/5=0.2$')
>>> plt.fill_between(numpy.arange(1.2, 1.8, 0.05), sct.gamma.pdf(numpy.arange(1.2, 1.8, 0.05), a=5, scale=0.2), color='r')
>>> plt.subplot(133)
>>> plt.plot(y, sct.gamma.pdf(y, a=0.1, scale=10))
>>> plt.title('$s=0.1, scale=1/r=1/0.1=10$')
>>> plt.fill_between(numpy.arange(1.2, 1.8, 0.05), sct.gamma.pdf(numpy.arange(1.2, 1.8, 0.05), a=0.1, scale=10), color='r')
>>> plt.show()

Screen Shot 2015-06-06 at 20.12.07.png

Example: Relationship between leaf weight and flower weight of a fictitious plant

It seems that as $ x_i $ grows, so does $ y_i $.

\begin{eqnarray}
\mu_i &=& Ax_i^b \\
&=&\exp(a)x_i^b = \exp(a+b\log x_i) (\because A = \exp(a)) \\
\log\mu_i &=& a+blogx_i

\end{eqnarray}
>>> model = smf.glm('y ~ numpy.log(x)', data=d, family=sm.families.Gamma(link=sm.families.links.log))
>>> model.fit().summary()
                 Generalized Linear Model Regression Results
==============================================================================
Dep. Variable:                      y   No. Observations:                   50
Model:                            GLM   Df Residuals:                       48
Model Family:                   Gamma   Df Model:                            1
Link Function:                    log   Scale:                  0.325084605974
Method:                          IRLS   Log-Likelihood:                 58.471
Date:                Sat, 06 Jun 2015   Deviance:                       17.251
Time:                        20:38:39   Pearson chi2:                     15.6
No. Iterations:                    12
================================================================================
                   coef    std err          z      P>|z|      [95.0% Conf. Int.]
--------------------------------------------------------------------------------
Intercept       -1.0403      0.119     -8.759      0.000        -1.273    -0.808
numpy.log(x)     0.6832      0.068      9.992      0.000         0.549     0.817
================================================================================
get_y_mean = lambda b1, b2, x: numpy.exp(b1 + b2 * numpy.log(x))
model = smf.glm('y ~ numpy.log(x)', data=d, family=sm.families.Gamma(link=sm.families.links.log))
vc = model.fit().params

ax = plt.figure().add_subplot(111)
ax.plot(d.x, d.y, 'o')
ax.plot(d.x, get_y_mean(-1, 0.7, d.x),'--')
ax.plot(d.x, get_y_mean(vc[0], vc[1], d.x))


phi = model.fit().scale
m = get_y_mean(vc[0], vc[1], d.x)
scale = [(i * phi) for i in m]
shape = 1 / phi
def plot_pi(q):
    x = numpy.r_[numpy.array(d.x), numpy.array(d.x)[::-1]]
    y = numpy.r_[sct.gamma.ppf(q, a=shape, scale=scale), sct.gamma.ppf(1-q, a=shape, scale=scale)[::-1]]
    pair = [(x[i], y[i]) for i in range(len(x))]
    poly = plt.Polygon(pair, alpha=0.2, edgecolor='none')
    return poly
ax.add_patch(plot_pi(0.05))
ax.add_patch(plot_pi(0.25))

plt.show()

Screen Shot 2015-06-06 at 22.55.20.png

Recommended Posts

Introduction to Statistical Modeling for Data Analysis Expanding the range of applications of GLM
Introduction to Statistical Modeling for Data Analysis GLM Model Selection
An introduction to statistical modeling for data analysis
Introduction to Statistical Modeling for Data Analysis Generalized Linear Models (GLM)
Introduction to Statistical Modeling for Data Analysis GLM Likelihood-Ratio Test and Test Asymmetry
An introduction to statistical modeling for data analysis (Midorimoto) reading notes (in Python and Stan)
An introduction to data analysis using Python-To increase the number of video views-
[Introduction to Python] How to get the index of data with a for statement
Introduction to Deep Learning for the first time (Chainer) Japanese character recognition Chapter 4 [Improvement of recognition accuracy by expanding data]
[Python] PCA scratch in the example of "Introduction to multivariate analysis"
From the introduction of JUMAN ++ to morphological analysis of Japanese with Python
"Introduction to data analysis by Bayesian statistical modeling starting with R and Stan" implemented in Python
[Introduction to Data Scientists] Basics of Python ♬
Data analysis in Python Summary of sources to look at first for beginners
Introduction to Quiz Statistics (1) -Mathematical analysis of question sentences to know the tendency of questions-
Organize Python tools to speed up the initial movement of data analysis competitions
Set the range of active strips to the preview range
How to use data analysis tools for beginners
[Introduction to minimize] Data analysis with SEIR model ♬
[Introduction to cx_Oracle] (5th) Handling of Japanese data
An introduction to voice analysis for music apps
From the introduction of pyethapp to the execution of contract
Organizing basic procedures for data analysis and statistical processing (4)
[For beginners] How to study Python3 data analysis exam
[Introduction to Python] How to iterate with the range function?
I tried to predict the J-League match (data analysis)
Summarized the types of sum of squares for analysis of variance
Reading Note: An Introduction to Data Analysis with Python
Organizing basic procedures for data analysis and statistical processing (2)
Analysis of measurement data ①-Memorandum of understanding for scipy fitting-
[Introduction to Python] Basic usage of the library matplotlib
[Technical book] Introduction to data analysis using Python -1 Chapter Introduction-
[Introduction to SIR model] Predict the end time of each country with COVID-19 data fitting ♬
[Introduction to logarithmic graph] Predict the end time of each country from the logarithmic graph of infection number data ♬
How to plot the distribution of bacterial composition from Qiime2 analysis data in a box plot
[Introduction to Data Scientists] Descriptive Statistics and Simple Regression Analysis ♬
Let's make the analysis of the Titanic sinking data like that
Introduction to Statistics The University of Tokyo Press Chapter 2 Exercises
20200329_Introduction to Data Analysis with Python Second Edition Personal Summary
[Understand in the shortest time] Python basics for data analysis
Data analysis based on the election results of the Tokyo Governor's election (2020)
[Introduction to matplotlib] Read the end time from COVID-19 data ♬
The story of copying data from S3 to Google's TeamDrive
[Introduction to Data Scientists] Basics of Python ♬ Functions and classes
[Python] Introduction to graph creation using coronavirus data [For beginners]
[Introduction to Reinforcement Learning] Reinforcement learning to try moving for the time being
[Introduction to Python] How to get data with the listdir function
I sent the data of Raspberry Pi to GCP (free)
Try to extract the features of the sensor data with CNN
[Python] How to use the for statement. A method of extracting by specifying a range or conditions.
A Python beginner first tried a quick and easy analysis of weather data for the last 10 years.