I tried implementing DeepPose with PyTorch

Introduction

Recently, PyToch suddenly started to get excited in the neural network library area, so I touched it. However, it is not interesting just to touch it, so I implemented DeepPose: Human Pose Optimization via Deep Neural Networks while comparing it with Chainer. For an overview of PyTorch itself, see Introduction to pytorch.

Implementation

Now, I would like to implement DeepPose with Chainer (1.19.0) and PyTorch (0.1.10) immediately.

  1. Model
  2. Loss Function
  3. Train We will implement it while comparing Chainer and PyTorch in the order of.

Model You can write almost the same code with Chainer and PyTorch. To put it bluntly, in PyTorch, when inputting the output of a Convolutional Layer to a Fully Connected Layer, it is necessary to explicitly convert it with view.

Chainer

# -*- coding: utf-8 -*-
""" AlexNet implementation. """

import chainer
import chainer.functions as F
import chainer.links as L

from modules.functions.chainer import mean_squared_error


class AlexNet(chainer.Chain):
    """ The AlexNet :
    'A. Krizhevsky, I. Sutskever, and G. Hinton.
    Imagenet clas-sification with deep convolutional neural networks. InNIPS , 2012'
    Args:
        Nj (int): Size of joints.
        use_visibility (bool): When it is ``True``,
            the function uses visibility to compute mean squared error.
    """

    def __init__(self, Nj, use_visibility=False):
        super(AlexNet, self).__init__(
            conv1=L.Convolution2D(None, 96, 11, stride=4),
            conv2=L.Convolution2D(None, 256, 5, pad=2),
            conv3=L.Convolution2D(None, 384, 3, pad=1),
            conv4=L.Convolution2D(None, 384, 3, pad=1),
            conv5=L.Convolution2D(None, 256, 3, pad=1),
            fc6=L.Linear(None, 4096),
            fc7=L.Linear(None, 4096),
            fc8=L.Linear(None, Nj*2),
        )
        self.Nj = Nj
        self.use_visibility = use_visibility
        self.train = True

    def predict(self, x):
        """ Predict 2D pose from image. """
        # layer1
        h = F.relu(self.conv1(x))
        h = F.max_pooling_2d(h, 3, stride=2)
        # layer2
        h = F.relu(self.conv2(h))
        h = F.max_pooling_2d(h, 3, stride=2)
        # layer3-5
        h = F.relu(self.conv3(h))
        h = F.relu(self.conv4(h))
        h = F.relu(self.conv5(h))
        h = F.max_pooling_2d(h, 3, stride=2)
        # layer6-8
        h = F.dropout(F.relu(self.fc6(h)), train=self.train)
        h = F.dropout(F.relu(self.fc7(h)), train=self.train)
        h = self.fc8(h)
        return F.reshape(h, (-1, self.Nj, 2))

    def __call__(self, image, x, v):
        y = self.predict(image)
        loss = mean_squared_error(y, x, v, use_visibility=self.use_visibility)
        chainer.report({'loss': loss}, self)
        return loss

PyTorch

# -*- coding: utf-8 -*-
""" AlexNet implementation. """

import torch.nn as nn
import torch.nn.functional as F


class AlexNet(nn.Module):
    """ The AlexNet :
    'A. Krizhevsky, I. Sutskever, and G. Hinton.
    Imagenet clas-sification with deep convolutional neural networks. InNIPS , 2012'
    Args:
        Nj (int): Size of joints.
    """

    def __init__(self, Nj):
        super(AlexNet, self).__init__()
        self.conv1 = nn.Conv2d(3, 96, 11, stride=4)
        self.conv2 = nn.Conv2d(96, 256, 5, padding=2)
        self.conv3 = nn.Conv2d(256, 384, 3, padding=1)
        self.conv4 = nn.Conv2d(384, 384, 3, padding=1)
        self.conv5 = nn.Conv2d(384, 256, 3, padding=1)
        self.fc6 = nn.Linear(256*6*6, 4096)
        self.fc7 = nn.Linear(4096, 4096)
        self.fc8 = nn.Linear(4096, Nj*2)
        self.Nj = Nj

    def forward(self, x):
        # layer1
        h = F.relu(self.conv1(x))
        h = F.max_pool2d(h, 3, stride=2)
        # layer2
        h = F.relu(self.conv2(h))
        h = F.max_pool2d(h, 3, stride=2)
        # layer3-5
        h = F.relu(self.conv3(h))
        h = F.relu(self.conv4(h))
        h = F.relu(self.conv5(h))
        h = F.max_pool2d(h, 3, stride=2)
        h = h.view(-1, 256*6*6)
        # layer6-8
        h = F.dropout(F.relu(self.fc6(h)), training=self.training)
        h = F.dropout(F.relu(self.fc7(h)), training=self.training)
        h = self.fc8(h)
        return h.view(-1, self.Nj, 2)

Loss Function It seems that you can write about Loss Function in almost the same way. The difference is that PyTorch requires some study because it requires the calculation to be implemented in Torch. (For studying Torch, here will be helpful.) On the other hand, I'm happy that it doesn't seem necessary to explicitly implement the backward calculation. (Chainer may not even need backward in some cases.)

Chainer

# -*- coding: utf-8 -*-
""" Mean squared error function. """

import numpy as np
from chainer import function
from chainer.utils import type_check


class MeanSquaredError(function.Function):
    """ Mean squared error (a.k.a. Euclidean loss) function. """
    def __init__(self, use_visibility=False):
        self.use_visibility = use_visibility
        self.diff = None
        self.N = None

    def check_type_forward(self, in_types):
        type_check.expect(in_types.size() == 3)
        type_check.expect(
            in_types[0].dtype == np.float32,
            in_types[1].dtype == np.float32,
            in_types[2].dtype == np.int32,
            in_types[0].shape == in_types[1].shape,
            in_types[0].shape[:-1] == in_types[2].shape[:-1]
        )

    def forward_cpu(self, inputs):
        x, t, v = inputs
        self.diff = x - t
        if self.use_visibility:
            self.N = v.sum()/2
            self.diff *= v
        else:
            self.N = self.diff.size/2
        diff = self.diff.ravel()
        return np.array(diff.dot(diff)/self.N, dtype=diff.dtype),

    def forward_gpu(self, inputs):
        x, t, v = inputs
        self.diff = x - t
        if self.use_visibility:
            self.N = int(v.sum())/2
            self.diff *= v
        else:
            self.N = self.diff.size/2
        diff = self.diff.ravel()
        return diff.dot(diff)/diff.dtype.type(self.N),

    def backward(self, inputs, gy):
        coeff = gy[0]*gy[0].dtype.type(2./self.N)
        gx0 = coeff*self.diff
        return gx0, -gx0, None

def mean_squared_error(x, t, v, use_visibility=False):
    """ Computes mean squared error over the minibatch.
    Args:
        x (Variable): Variable holding an float32 vector of estimated pose.
        t (Variable): Variable holding an float32 vector of ground truth pose.
        v (Variable): Variable holding an int32 vector of ground truth pose's visibility.
            (0: invisible, 1: visible)
        use_visibility (bool): When it is ``True``,
            the function uses visibility to compute mean squared error.
    Returns:
        Variable: A variable holding a scalar of the mean squared error loss.
    """
    return MeanSquaredError(use_visibility)(x, t, v)

PyTorch

# -*- coding: utf-8 -*-
""" Mean squared error function. """

import torch.nn as nn


class MeanSquaredError(nn.Module):
    """ Mean squared error (a.k.a. Euclidean loss) function. """

    def __init__(self, use_visibility=False):
        super(MeanSquaredError, self).__init__()
        self.use_visibility = use_visibility

    def forward(self, *inputs):
        x, t, v = inputs
        diff = x - t
        if self.use_visibility:
            N = (v.sum()/2).data[0]
            diff = diff*v
        else:
            N = diff.numel()/2
        diff = diff.view(-1)
        return diff.dot(diff)/N

def mean_squared_error(x, t, v, use_visibility=False):
    """ Computes mean squared error over the minibatch.
    Args:
        x (Variable): Variable holding an float32 vector of estimated pose.
        t (Variable): Variable holding an float32 vector of ground truth pose.
        v (Variable): Variable holding an int32 vector of ground truth pose's visibility.
            (0: invisible, 1: visible)
        use_visibility (bool): When it is ``True``,
            the function uses visibility to compute mean squared error.
    Returns:
        Variable: A variable holding a scalar of the mean squared error loss.
    """
    return MeanSquaredError(use_visibility)(x, t, v)

Train The last is the learning code. This can also be implemented with almost the same code. Regarding learning, Chainer seems to be a little more confused, but considering that PyTorch is v0.1.10 (as of March 28, 2017), is it a feeling of expectation for the future of PyTorch?

Chainer

# -*- coding: utf-8 -*-
""" Train pose net. """

import os
import chainer
from chainer import optimizers
from chainer import training
from chainer.training import extensions
from chainer import serializers

from modules.errors import FileNotFoundError, UnknownOptimizationMethodError
from modules.models.chainer import AlexNet
from modules.dataset_indexing.chainer import PoseDataset


class TestModeEvaluator(extensions.Evaluator):

    def evaluate(self):
        model = self.get_target('main')
        model.train = False
        ret = super(TestModeEvaluator, self).evaluate()
        model.train = True
        return ret

class TrainPoseNet(object):
    """ Train pose net of estimating 2D pose from image.
    Args:
        Nj (int): Number of joints.
        use_visibility (bool): Use visibility to compute loss.
        epoch (int): Number of epochs to train.
        opt (str): Optimization method.
        gpu (int): GPU ID (negative value indicates CPU).
        train (str): Path to training image-pose list file.
        val (str): Path to validation image-pose list file.
        batchsize (int): Learning minibatch size.
        out (str): Output directory.
        resume (str): Initialize the trainer from given file.
            The file name is 'epoch-{epoch number}.iter'.
        resume_model (str): Load model definition file to use for resuming training
            (it\'s necessary when you resume a training).
            The file name is 'epoch-{epoch number}.model'.
        resume_opt (str): Load optimization states from this file
            (it\'s necessary when you resume a training).
            The file name is 'epoch-{epoch number}.state'.
    """

    def __init__(self, **kwargs):
        self.Nj = kwargs['Nj']
        self.use_visibility = kwargs['use_visibility']
        self.epoch = kwargs['epoch']
        self.gpu = kwargs['gpu']
        self.opt = kwargs['opt']
        self.train = kwargs['train']
        self.val = kwargs['val']
        self.batchsize = kwargs['batchsize']
        self.out = kwargs['out']
        self.resume = kwargs['resume']
        self.resume_model = kwargs['resume_model']
        self.resume_opt = kwargs['resume_opt']
        # validate arguments.
        self._validate_arguments()

    def _validate_arguments(self):
        for path in (self.train, self.val):
            if not os.path.isfile(path):
                raise FileNotFoundError('{0} is not found.'.format(path))
        if self.opt not in ('MomentumSGD', 'Adam'):
            raise UnknownOptimizationMethodError(
                '{0} is unknown optimization method.'.format(self.opt))
        if self.resume is not None:
            for path in (self.resume, self.resume_model, self.resume_opt):
                if not os.path.isfile(path):
                    raise FileNotFoundError('{0} is not found.'.format(path))

    def _get_optimizer(self):
        if self.opt == 'MomentumSGD':
            optimizer = optimizers.MomentumSGD()
        elif self.opt == "Adam":
            optimizer = optimizers.Adam()
        return optimizer

    def start(self):
        """ Train pose net. """
        # initialize model to train.
        model = AlexNet(self.Nj, self.use_visibility)
        if self.resume_model:
            serializers.load_npz(self.resume_model, model)
        # prepare gpu.
        if self.gpu >= 0:
            chainer.cuda.get_device(self.gpu).use()
            model.to_gpu()
        # load the datasets.
        train = PoseDataset(self.train)
        val = PoseDataset(self.val, data_augmentation=False)
        # training/validation iterators.
        train_iter = chainer.iterators.MultiprocessIterator(
            train, self.batchsize)
        val_iter = chainer.iterators.MultiprocessIterator(
            val, self.batchsize, repeat=False, shuffle=False)
        # set up an optimizer.
        optimizer = self._get_optimizer()
        optimizer.setup(model)
        if self.resume_opt:
            chainer.serializers.load_npz(self.resume_opt, optimizer)
        # set up a trainer.
        updater = training.StandardUpdater(train_iter, optimizer, device=self.gpu)
        trainer = training.Trainer(
            updater, (self.epoch, 'epoch'), os.path.join(self.out, 'chainer'))
        # standard trainer settings
        trainer.extend(extensions.dump_graph('main/loss'))
        val_interval = (10, 'epoch')
        trainer.extend(TestModeEvaluator(val_iter, model, device=self.gpu), trigger=val_interval)
        # save parameters and optimization state per validation step
        resume_interval = (self.epoch/10, 'epoch')
        trainer.extend(extensions.snapshot_object(
            model, "epoch-{.updater.epoch}.model"), trigger=resume_interval)
        trainer.extend(extensions.snapshot_object(
            optimizer, "epoch-{.updater.epoch}.state"), trigger=resume_interval)
        trainer.extend(extensions.snapshot(
            filename="epoch-{.updater.epoch}.iter"), trigger=resume_interval)
        # show log
        log_interval = (10, "iteration")
        trainer.extend(extensions.LogReport(trigger=log_interval))
        trainer.extend(extensions.observe_lr(), trigger=log_interval)
        trainer.extend(extensions.PrintReport(
            ['epoch', 'main/loss', 'validation/main/loss', 'lr']), trigger=log_interval)
        trainer.extend(extensions.ProgressBar(update_interval=10))
        # start training
        if self.resume:
            chainer.serializers.load_npz(self.resume, trainer)
        trainer.run()

PyTorch

# -*- coding: utf-8 -*-
""" Train pose net. """

import os
import time
from tqdm import tqdm, trange
import torch
import torch.optim as optim
from torch.autograd import Variable
from torchvision import transforms

from modules.errors import FileNotFoundError, GPUNotFoundError, UnknownOptimizationMethodError
from modules.models.pytorch import AlexNet
from modules.dataset_indexing.pytorch import PoseDataset, Crop, RandomNoise, Scale
from modules.functions.pytorch import mean_squared_error


class TrainLogger(object):
    """ Logger of training pose net.
    Args:
        out (str): Output directory.
    """

    def __init__(self, out):
        try:
            os.makedirs(out)
        except OSError:
            pass
        self.file = open(os.path.join(out, 'log'), 'w')
        self.logs = []

    def write(self, log):
        """ Write log. """
        tqdm.write(log)
        tqdm.write(log, file=self.file)
        self.logs.append(log)

    def state_dict(self):
        """ Returns the state of the logger. """
        return {'logs': self.logs}

    def load_state_dict(self, state_dict):
        """ Loads the logger state. """
        self.logs = state_dict['logs']
        # write logs.
        tqdm.write(self.logs[-1])
        for log in self.logs:
            tqdm.write(log, file=self.file)

class TrainPoseNet(object):
    """ Train pose net of estimating 2D pose from image.
    Args:
        Nj (int): Number of joints.
        use_visibility (bool): Use visibility to compute loss.
        epoch (int): Number of epochs to train.
        opt (str): Optimization method.
        gpu (bool): Use GPU.
        train (str): Path to training image-pose list file.
        val (str): Path to validation image-pose list file.
        batchsize (int): Learning minibatch size.
        out (str): Output directory.
        resume (str): Initialize the trainer from given file.
            The file name is 'epoch-{epoch number}.iter'.
        resume_model (str): Load model definition file to use for resuming training
            (it\'s necessary when you resume a training).
            The file name is 'epoch-{epoch number}.model'.
        resume_opt (str): Load optimization states from this file
            (it\'s necessary when you resume a training).
            The file name is 'epoch-{epoch number}.state'.
    """

    def __init__(self, **kwargs):
        self.Nj = kwargs['Nj']
        self.use_visibility = kwargs['use_visibility']
        self.epoch = kwargs['epoch']
        self.gpu = (kwargs['gpu'] >= 0)
        self.opt = kwargs['opt']
        self.train = kwargs['train']
        self.val = kwargs['val']
        self.batchsize = kwargs['batchsize']
        self.out = kwargs['out']
        self.resume = kwargs['resume']
        self.resume_model = kwargs['resume_model']
        self.resume_opt = kwargs['resume_opt']
        # validate arguments.
        self._validate_arguments()

    def _validate_arguments(self):
        if self.gpu and not torch.cuda.is_available():
            raise GPUNotFoundError('GPU is not found.')
        for path in (self.train, self.val):
            if not os.path.isfile(path):
                raise FileNotFoundError('{0} is not found.'.format(path))
        if self.opt not in ('MomentumSGD', 'Adam'):
            raise UnknownOptimizationMethodError(
                '{0} is unknown optimization method.'.format(self.opt))
        if self.resume is not None:
            for path in (self.resume, self.resume_model, self.resume_opt):
                if not os.path.isfile(path):
                    raise FileNotFoundError('{0} is not found.'.format(path))

    def _get_optimizer(self, model):
        if self.opt == 'MomentumSGD':
            optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)
        elif self.opt == "Adam":
            optimizer = optim.Adam(model.parameters())
        return optimizer

    def _train(self, model, optimizer, train_iter, log_interval, logger, start_time):
        model.train()
        for iteration, batch in enumerate(tqdm(train_iter, desc='this epoch')):
            image, pose, visibility = Variable(batch[0]), Variable(batch[1]), Variable(batch[2])
            if self.gpu:
                image, pose, visibility = image.cuda(), pose.cuda(), visibility.cuda()
            optimizer.zero_grad()
            output = model(image)
            loss = mean_squared_error(output, pose, visibility, self.use_visibility)
            loss.backward()
            optimizer.step()
            if iteration % log_interval == 0:
                log = 'elapsed_time: {0}, loss: {1}'.format(time.time() - start_time, loss.data[0])
                logger.write(log)

    def _test(self, model, test_iter, logger, start_time):
        model.eval()
        test_loss = 0
        for batch in test_iter:
            image, pose, visibility = Variable(batch[0]), Variable(batch[1]), Variable(batch[2])
            if self.gpu:
                image, pose, visibility = image.cuda(), pose.cuda(), visibility.cuda()
            output = model(image)
            test_loss += mean_squared_error(output, pose, visibility, self.use_visibility).data[0]
        test_loss /= len(test_iter)
        log = 'elapsed_time: {0}, validation/loss: {1}'.format(time.time() - start_time, test_loss)
        logger.write(log)

    def _checkpoint(self, epoch, model, optimizer, logger):
        filename = os.path.join(self.out, 'pytorch', 'epoch-{0}'.format(epoch))
        torch.save({'epoch': epoch + 1, 'logger': logger.state_dict()}, filename + '.iter')
        torch.save(model.state_dict(), filename + '.model')
        torch.save(optimizer.state_dict(), filename + '.state')

    def start(self):
        """ Train pose net. """
        # initialize model to train.
        model = AlexNet(self.Nj)
        if self.resume_model:
            model.load_state_dict(torch.load(self.resume_model))
        # prepare gpu.
        if self.gpu:
            model.cuda()
        # load the datasets.
        train = PoseDataset(
            self.train,
            input_transform=transforms.Compose([
                transforms.ToTensor(),
                RandomNoise()]),
            output_transform=Scale(),
            transform=Crop(data_augmentation=True))
        val = PoseDataset(
            self.val,
            input_transform=transforms.Compose([
                transforms.ToTensor()]),
            output_transform=Scale(),
            transform=Crop(data_augmentation=False))
        # training/validation iterators.
        train_iter = torch.utils.data.DataLoader(train, batch_size=self.batchsize, shuffle=True)
        val_iter = torch.utils.data.DataLoader(val, batch_size=self.batchsize, shuffle=False)
        # set up an optimizer.
        optimizer = self._get_optimizer(model)
        if self.resume_opt:
            optimizer.load_state_dict(torch.load(self.resume_opt))
        # set intervals.
        val_interval = 10
        resume_interval = self.epoch/10
        log_interval = 10
        # set logger and start epoch.
        logger = TrainLogger(os.path.join(self.out, 'pytorch'))
        start_epoch = 1
        if self.resume:
            resume = torch.load(self.resume)
            start_epoch = resume['epoch']
            logger.load_state_dict(resume['logger'])
        # start training.
        start_time = time.time()
        for epoch in trange(start_epoch, self.epoch + 1, desc='     total'):
            self._train(model, optimizer, train_iter, log_interval, logger, start_time)
            if epoch % val_interval == 0:
                self._test(model, val_iter, logger, start_time)
            if epoch % resume_interval == 0:
                self._checkpoint(epoch, model, optimizer, logger)

Performance verification

PyTorch has a reputation for being fast, so I compared the speed with Chainer. The following data set was used for verification as in the paper.

Learning time

We measured the time required for learning 100 epoch in the CPU environment and GPU environment respectively. We used AWS m4.large and g2.2xlarge as the CPU environment and GPU environment, respectively.

CPU environment

In the CPU environment, learning was completed about 1.6 times faster with PyTorch.

Library Time required[h]
Chainer 77.5
PyTorch 48.1

This time, I trained with Momentum SGD implemented in Chainer and PyTorch respectively, but the implementation seems to be different and the state of convergence is different between them. However, since the learning set is randomly subjected to Data Augmentation, the results may differ if the seeds are aligned. Training_time_comparison_(CPU).png

GPU environment

In the GPU environment, learning was completed about 1.3 times faster with PyTorch.

Library Time required[h]
Chainer 4.25
PyTorch 3.23

In addition, the learning curve tended to be similar to the CPU environment. Training_time_comparison_(GPU).png

Predicted execution time

The time required for prediction was measured 10,000 times in each of the CPU environment and GPU environment, and the average was calculated. The environment is the same as when learning.

CPU environment

In the CPU environment, the average predicted time of Chainer and PyTorch was slightly faster for Chainer. Estimating_time_comparison_CPU.png

GPU environment

In the GPU environment, the average predicted time of Chainer and PyTorch was almost the same. Estimating_time_comparison_GPU.png

Summary

In terms of implementation, PyTorch was as easy to write as Chainer. I felt that PyTorch was a little less familiar, but I can expect it in the future. Also, it seems to be an advantage that you do not have to explicitly implement backward. In terms of performance, PyTorch was comparable to Chainer in forward calculations, but it was surprising that the learning speed was faster than Chainer. In the CPU environment, it is interesting that PyTorch was a little slower in forward calculation, but was 1.6 times faster in learning. PyTorch is considered to be superior to automatic differentiation because it does not explicitly implement backward but PyTorch is faster in learning. Next time, I'd like to see how the performance is affected if backward is explicitly implemented. For the time being, the code can be found at here. If you like, please refer to it when learning PyTorch.

Recommended Posts

I tried implementing DeepPose with PyTorch
I tried implementing DeepPose with PyTorch PartⅡ
I tried batch normalization with PyTorch (+ note)
I tried to implement CVAE with PyTorch
I tried to detect Mario with pytorch + yolov3
I tried to implement reading Dataset with PyTorch
I tried fp-growth with python
I tried Learning-to-Rank with Elasticsearch!
I tried clustering with PyCaret
Try implementing XOR with PyTorch
I tried gRPC with Python
I tried scraping with python
I made Word2Vec with Pytorch
I tried to move Faster R-CNN quickly with pytorch
I tried to implement and learn DCGAN with PyTorch
[Introduction to Pytorch] I tried categorizing Cifar10 with VGG16 ♬
I tried to implement SSD with PyTorch now (Dataset)
I tried summarizing sentences with summpy
I tried machine learning with liblinear
I tried web scraping with python.
I tried moving food with SinGAN
I implemented Attention Seq2Seq with PyTorch
I tried to explain Pytorch dataset
I tried to classify MNIST by GNN (with PyTorch geometric)
I tried face detection with MTCNN
I tried running prolog with python 3.8.2.
I tried SMTP communication with Python
I tried sentence generation with GPT-2
I tried learning LightGBM with Yellowbrick
I tried face recognition with OpenCV
I tried to implement SSD with PyTorch now (model edition)
I tried to implement sentence classification by Self Attention with PyTorch
I tried multiple regression analysis with polynomial regression
I tried sending an SMS with Twilio
I tried using Amazon SQS with django-celery
I implemented Shake-Shake Regularization (ShakeNet) with PyTorch
I tried to implement Autoencoder with TensorFlow
I tried linebot with flask (anaconda) + heroku
I tried to visualize AutoEncoder with TensorFlow
I tried to get started with Hy
I tried scraping Yahoo News with Python
I tried using Selenium with Headless chrome
I tried sending an email with python.
I tried non-photorealistic rendering with Python + opencv
I tried a functional language with Python
[Introduction to Pytorch] I played with sinGAN ♬
I tried recursion with Python ② (Fibonacci sequence)
I tried playing with the image with Pillow
I tried to solve TSP with QAOA
I tried simple image recognition with Jupyter
I tried CNN fine tuning with Resnet
I tried natural language processing with transformers.
#I tried something like Vlookup with Python # 2
I tried scraping
I tried PyQ
Play with PyTorch
I tried AutoKeras
I tried papermill
Cross-validation with PyTorch
Beginning with PyTorch
I tried django-slack