Adjusting LightGBM parameters with Optuna

reference

https://tech.preferred.jp/ja/blog/hyperparameter-tuning-with-optuna-integration-lightgbm-tuner/

Install Optuna

pip install optuna

Parameter search

import optuna

def objective(trial):
    #x_train, y_train, x_test, y_Prepare test

    dtrain = lgb.Dataset(x_train, label=y_train)
 
    param = {
        'objective': 'binary',
        'metric': 'binary_logloss',
        'lambda_l1': trial.suggest_loguniform('lambda_l1', 1e-8, 10.0),
        'lambda_l2': trial.suggest_loguniform('lambda_l2', 1e-8, 10.0),
        'num_leaves': trial.suggest_int('num_leaves', 2, 256),
        'feature_fraction': trial.suggest_uniform('feature_fraction', 0.4, 1.0),
        'bagging_fraction': trial.suggest_uniform('bagging_fraction', 0.4, 1.0),
        'bagging_freq': trial.suggest_int('bagging_freq', 1, 7),
        'min_child_samples': trial.suggest_int('min_child_samples', 5, 100),
    }
 
    gbm = lgb.train(param, dtrain)
    preds = gbm.predict(x_test)
    pred_labels = np.rint(preds)
    
    #pred_labels and y_Calculate the evaluation value with test

    return precision #This time, parameter search with precision
 
study = optuna.create_study(direction='maximize')
study.optimize(objective, n_trials=100)
 
print('Number of finished trials:', len(study.trials))
print('Best trial:', study.best_trial.params)

Recommended Posts

Adjusting LightGBM parameters with Optuna
Optimize RF or lightGBM with Optuna
Try function optimization with Optuna
Reproduce LightGBM Objective with python
Tuning hyperparameters with LightGBM Tuner
Tuning Keras parameters with Keras Tuner
4. Circle parameters with neural network!
Easily build a natural language processing model with BERT + LightGBM + optuna
Function parameters with only an asterisk'*'
I tried learning LightGBM with Yellowbrick
Efficiently search for optimal parameters (Optuna)