Environmentally friendly scraping using image processing

Continued Try to make a capture software with as high accuracy as possible with python (2) https://qiita.com/akaiteto/items/56bfd8d764d42b9ff508 Try to make a capture software with as high accuracy as possible with python (1) https://qiita.com/akaiteto/items/b2119260d732bb189c87

Introduction

I'm tired of screen / audio capture, so I'll make another part. The following process is a rough process that is currently envisioned.

    1. Command execution at the specified time -> 2. Start the browser with the preset URL
    1. Capture browser screenshots and audio
  1. Video output by merging browser screenshots and audio

This time I will make the second part. Because I want to flexibly support any structure of the website The goal is to operate the browser with opencv image detection without analyzing HTML.

I added the reason for retrofitting, but ... I just want to process the image because it's a screenshot of the screen.

specification

1. 1. Transition to URL destination
2. Press the play button
3. 3. Detect area of weather map
4. Record the detected area

Imagine a site that delivers a video of some weather map. The whole process is assumed as above. This time it will probably be 1-3.

Execution environment

OS : windows10 ver: python3.7 web: chrome

1. 1. Transition to URL destination

Selenium

Let's use Selenium, a library that allows you to operate the browser from commands. https://qiita.com/hanzawak/items/2ab4d2a333d6be6ac760 https://rabbitfoot.xyz/selenium-chrome-profile/

As an aside, I'm using Chrome + pycharm, so When installing the web driver, install it in python in the virtual environment.

#Installation in a virtual environment
cd D:~ Omitted ~\venv\Scripts
bat activate.bat
pip install chromedriver-binary==(The version of Chrome you are using)

Open URL

Display the weather map site. Also save the captured image of the opened chrome for later steps. If you use the source below, please fill in the (your user name) section. For details on the profile path, see https://rabbitfoot.xyz/selenium-chrome-profile/


from selenium import webdriver
import chromedriver_binary  #Important
from selenium.webdriver.chrome.options import Options
import win32gui
import win32ui
import win32con
import numpy as np
import cv2

#Get full screen size
hnd = win32gui.GetDesktopWindow()
x0, y0, x1, y1 = win32gui.GetWindowRect(hnd)
fullscreen_width = x1 - x0
fullscreen_height = y1 - y0

#Browser size
browse_width=300
browse_height=fullscreen_height

#Launch browser
options = Options()
options.add_argument(r"--user-data-dir=C:\Users\(Your username)\AppData\Local\Google\Chrome\User Data")
driver = webdriver.Chrome(chrome_options=options)
driver.get("url")
driver.set_window_size(browse_width,browse_height)
driver.set_window_position(0,0)

#Browser screenshot
windc = win32gui.GetWindowDC(hnd)
srcdc = win32ui.CreateDCFromHandle(windc)
memdc = srcdc.CreateCompatibleDC()
bmp = win32ui.CreateBitmap()
bmp.CreateCompatibleBitmap(srcdc, browse_width, browse_height)
memdc.SelectObject(bmp)
memdc.BitBlt((0, 0), (browse_width, browse_height), srcdc, (0, 0), win32con.SRCCOPY)
bmp.SaveBitmapFile(memdc, 'PointDetect.bmp')


# driver.close()

When opening a site that requires login. I don't want to write my password raw as it is physiologically unpleasant.

** If the site requires login, log in from chrome in advance **

user data directory is already in use, please specify a unique value for --user-data-dir argument, or don't use --user-data-dir

By the way, if you run it with chrome running, the above error will occur. You can take measures, but this time I will not do it because there is no need to start multiple chrome.

2. Press the play button

Let's try to detect the button by image processing and click it.

As an outline of the process, Get the coordinates of the play button and click on the coordinates in the pyautogui library. The problem is getting the coordinates of the play button. There are the following two proposals for consideration.

1. 1. Detect shapes and get coordinates
2. Find the same part as the image of the play button

1. 1. Detect shapes and get coordinates

1. 1. Detect shapes and get coordinates

Let's do it easily with the opencv function.

DetectTriangle.py


import cv2
import numpy as np

def DetectTriangle(img, inputNm, outputNm):
    image_obj = cv2.imread(inputNm)
    img = cv2.adaptiveThreshold(img, 255, 1, 1, 11, 2)
    cv2.imwrite("PointDetect_threshold" + outputNm, img)

    contours, hierarchy = cv2.findContours(img,cv2.RETR_CCOMP,cv2.CHAIN_APPROX_NONE)

    for cnt in contours:
        approx = cv2.approxPolyDP(cnt, 0.1 * cv2.arcLength(cnt, True), True)
        # approx = cv2.approxPolyDP(cnt, 0.07 * cv2.arcLength(cnt, True), True)  #Parameters: Affects accuracy
        # approx = cv2.approxPolyDP(cnt, .03 * cv2.arcLength(cnt, True), True)   #Parameters: Affects accuracy
        # approx = cv2.approxPolyDP(cnt, .009 * cv2.arcLength(cnt, True), True)  #Parameters: Affects accuracy

        if len(approx) == 3:
            print("triangle")
            cv2.drawContours(image_obj, [cnt], 0, (0, 0, 255), -1)
        elif len(approx) == 4:
            print("square")
            cv2.drawContours(image_obj, [cnt], 0, (0, 255, 0), -1)
        elif len(approx) == 8:
            print("circle")
            area = cv2.contourArea(cnt)
            (cx, cy), radius = cv2.minEnclosingCircle(cnt)
            circleArea = radius * radius * np.pi
            if circleArea == area:
                cv2.drawContours(image_obj, [cnt], 0, (255, 0, 0), -1)

    cv2.imwrite(outputNm, image_obj)

inputNm = 'PointDetect2.bmp'
srcImage = cv2.imread(inputNm)

gray = cv2.cvtColor(srcImage, cv2.COLOR_BGR2GRAY)
cv2.imwrite("PointDetect_gray.png ", gray)

kernel = np.ones((4, 4), np.uint8)
dilation = cv2.dilate(gray, kernel, iterations=1)
cv2.imwrite("PointDetect_dilation.png ", dilation)

blur = cv2.GaussianBlur(dilation, (5, 5), 0)
cv2.imwrite("PointDetect_blur.png ", dilation)

DetectTriangle(blur,inputNm,"result_blur.png ")         #Blur
DetectTriangle(gray,inputNm,"result_gray.png ")         #grayscale
DetectTriangle(dilation,inputNm,"result_dilation.png ") #Inflate (because the play button is small)

The processing you want to do is roughly as follows.

1. 1. Preprocessing
2. Threshold processing
3. 3. Contour extraction

I will try it with a screenshot of google image search. PointDetect2.jpg

Grayscale as pre-processing ↓ (I do various other things in the source) PointDetect_gray.png

Threshold processing ↓ PointDetect_thresholdresult_dilation.png

Contour extraction ↓ result_gray.png

Red is a triangle, green is a quadrangle, and blue is a circle. From the coordinates of the outline of the figure detected here, It is a calculation to specify the position of the play button, which is a triangle shape.

・ ・ ・ ・ ・ ・

So, I went to the weather site. The result was ... no good. I tried some blurring, expansion, parameter adjustment, etc., but it didn't work.

The play button has also been detected, but there are too many false positives. In the first place, it is not suitable for sites with many triangular shapes, Another drawback is that it may be necessary to adjust the appropriate parameters for each site.

It would be possible to detect this weather site specifically, I want to make it a format that can be done on various sites, so plan 1 is rejected.

2. Find the same part as the image of the play button

2. Find the same part as the image of the play button

Let's detect it by template matching. The process of detecting if the same small image is contained in another image. In order to perform template matching, it is necessary to tell the image of the play button that is the correct answer.

無題.png So, under the above flow, Add a phase called "Get image of play button (manual)". I wanted to do everything automatically, but it can't be helped.

無題.png

Reference: https://shizenkarasuzon.hatenablog.com/entry/2020/03/23/005440

In terms of image, A small window like the one above will appear, and the user will select the button he wants to click in the square selection window (light blue). Save the image for template matching with the image of ... Manual operation is assumed only for the first time.

Template matching

So I will try template matching.

http://labs.eecs.tottori-u.ac.jp/sd/Member/oyamada/OpenCV/html/py_tutorials/py_imgproc/py_template_matching/py_template_matching.html

When I ran it according to the openCV sample source, it worked very well. Let's go with the policy of 2

3. 3. Detect area of weather map

I'm messing with opencv's absdiff (miscellaneous) Performs motion detection on the images before and after pressing the play button, Detects the area of change.

Summary

I will summarize the sources so far.

As a premise, the image of the part you want to click, Suppose you already have an image of the play button here. ↓ Cut out image like below PointDetect_patch.jpg

Before running, install the following libraries.

pip install PyAutoGUI

In my environment, the following error occurred and the installation failed.

SyntaxError: (unicode error) 'utf-8' codec can't decode byte 0x93 in position 0: invalid start byte (sitecustomize.py, line 7)

https://qiita.com/hisakichi95/items/41002333efa8f6371d40 I installed an older version of PyMsgBox by referring to.

So, the following source. I don't organize it

Detect.py


from selenium import webdriver
import chromedriver_binary  #Important
from selenium.webdriver.chrome.options import Options
from selenium.webdriver.common.action_chains import ActionChains
from selenium.webdriver.common.keys import Keys
import win32gui
import win32ui
import win32con
import numpy as np
import cv2

def DetectMotion(ImgNm1,ImgNm2):
    img1 = cv2.imread(ImgNm1, 0)
    img2 = cv2.imread(ImgNm2, 0)

    img1 = img1.copy().astype("float")
    cv2.accumulateWeighted(img2, img1, 0.6)

    cv2.accumulateWeighted(img2, img1, 0.6)
    frameDelta = cv2.absdiff(img2, cv2.convertScaleAbs(img1))

    thresh = cv2.threshold(frameDelta, 3, 255, cv2.THRESH_BINARY)[1]
    contours, hierarchy = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

    img2 = cv2.imread(TEMP_AFTER_SCREENSHOT)
    top_left_X = 9999999
    top_left_Y = 9999999
    bum_right_X = 0
    bum_right_Y = 0

    for i in range(0, len(contours)):
        if len(contours[i]) > 0:

            # remove small objects
            if cv2.contourArea(contours[i]) < 500:
                continue

            rect = contours[i]
            x, y, w, h = cv2.boundingRect(rect)
            pos_top = (x, y)
            pos_bum = (x + w, y + h)

            print(x, y, x + w, y + h)
            top_left_X = pos_top[0] if top_left_X > pos_top[0] else top_left_X
            top_left_Y = pos_top[1] if top_left_Y > pos_top[1] else top_left_Y
            bum_right_X = pos_bum[0] if bum_right_X < pos_bum[0] else bum_right_X
            bum_right_Y = pos_bum[1] if bum_right_Y < pos_bum[1] else bum_right_Y

    return (top_left_X, top_left_Y), (bum_right_X, bum_right_Y)

def DiffImage(img1,img2):
    im_diff = img1.astype(int) - img2.astype(int)
    im_diff_abs = np.abs(im_diff)
    return im_diff_abs.max()

def DetectBtn(bmp,memdc,CapFIleNm,PatchNm,scrollY):
    memdc.BitBlt((0, 0), (browse_width, browse_height), srcdc, (0, 0), win32con.SRCCOPY)
    bmp.SaveBitmapFile(memdc, CapFIleNm)
    #Get button coordinates
    img = cv2.imread(CapFIleNm, 0)

    img2 = img.copy()
    template = cv2.imread(PatchNm, 0)
    w, h = template.shape[::-1]

    meth = 'cv2.TM_CCOEFF_NORMED'
    img = img2.copy()
    method = eval(meth)

    res = cv2.matchTemplate(img, template, method)
    min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)

    if method in [cv2.TM_SQDIFF, cv2.TM_SQDIFF_NORMED]:
        top_left = min_loc
    else:
        top_left = max_loc
    bottom_right = (top_left[0] + w, top_left[1] + h)

    cv2.rectangle(img, top_left, bottom_right, 255, 2)
    range = ((bottom_right[0] - top_left[0]) / 2, (bottom_right[1] - top_left[1]) / 2)
    btn_center = (int(top_left[0] + range[0]), int(top_left[1] + range[1]))
    print("Button upper left coordinates", top_left)
    print("Button upper right coordinates", bottom_right)
    print("Button center coordinates", btn_center)

    #Cut out the detected part
    img1 = img[top_left[1]: bottom_right[1], top_left[0]: bottom_right[0]]

    if DiffImage(template,img1) > 180:
        #Too different from the button image-> False
        cv2.imwrite("Detect_Fail" + str(scrollY) + ".jpg ", img1)
        print("btn not exist")
        return False,(0,0)
    else:
        #success-> True
        cv2.imwrite("Detect_Success" + str(scrollY) + ".jpg ", img1)
        print("btn exist")
        return True,btn_center

TEMP_BEFORE_SCREENSHOT = 'PointDetect_before.bmp'
TEMP_AFTER_SCREENSHOT = 'PointDetect_after.bmp'
TEMP_PATCH = 'PointDetect_patch.jpg'

#Get full screen size
hnd = win32gui.GetDesktopWindow()
x0, y0, x1, y1 = win32gui.GetWindowRect(hnd)
fullscreen_width = x1 - x0
fullscreen_height = y1 - y0

#Browser size
# browse_width=fullscreen_width
# browse_height=fullscreen_height
browse_width=1920
browse_height=1080

#Launch browser
options = Options()
# options.add_argument(r"--user-data-dir=C:\Users\Your username\AppData\Local\Google\Chrome\User Data")
driver = webdriver.Chrome(chrome_options=options)
driver.get("https://")
driver.set_window_size(browse_width,browse_height)
driver.set_window_position(0,0)

#Waiting for browser behavior
import time
time.sleep(3)

#Screenshot preparation
windc = win32gui.GetWindowDC(hnd)
srcdc = win32ui.CreateDCFromHandle(windc)
memdc = srcdc.CreateCompatibleDC()
bmp = win32ui.CreateBitmap()
bmp.CreateCompatibleBitmap(srcdc, browse_width, browse_height)
memdc.SelectObject(bmp)

#Scroll until you find the button
Detectflg=False
isScrolButton=False
scrollY = 0
while Detectflg==False:
    scrollY += int(fullscreen_height/4)
    #Capture capture before and after scrolling
    memdc.BitBlt((0, 0), (browse_width, browse_height), srcdc, (0, 0), win32con.SRCCOPY)
    bmp.SaveBitmapFile(memdc, TEMP_BEFORE_SCREENSHOT)
    driver.execute_script("window.scrollTo(0, "+ str(scrollY) +")")
    time.sleep(5)
    memdc.BitBlt((0, 0), (browse_width, browse_height), srcdc, (0, 0), win32con.SRCCOPY)
    bmp.SaveBitmapFile(memdc, TEMP_AFTER_SCREENSHOT)

    img1 = cv2.imread(TEMP_BEFORE_SCREENSHOT, 0)
    img2 = cv2.imread(TEMP_AFTER_SCREENSHOT, 0)

    diff = DiffImage(img1,img2)
    if diff < 100:
        #The screen does not change even if you scroll->I failed because I came to the bottom of the scroll
        print("scrollbutton")
        flg=True,btn_pos
        isScrolButton=True

    flg,btn_pos = DetectBtn(bmp,memdc,TEMP_AFTER_SCREENSHOT,TEMP_PATCH,scrollY)
    Detectflg = flg

#Click the button coordinates
if isScrolButton:
    print("Button not found")
    exit()

#Regeneration
import pyautogui
pyautogui.click(btn_pos[0],btn_pos[1])

#Save before change
memdc.BitBlt((0, 0), (browse_width, browse_height), srcdc, (0, 0), win32con.SRCCOPY)
bmp.SaveBitmapFile(memdc, TEMP_BEFORE_SCREENSHOT)

#Wait until the screen changes
time.sleep(5)

#Save after change
memdc.BitBlt((0, 0), (browse_width, browse_height), srcdc, (0, 0), win32con.SRCCOPY)
bmp.SaveBitmapFile(memdc, TEMP_AFTER_SCREENSHOT)

#Motion detection
top_left,bottom_right = DetectMotion(TEMP_BEFORE_SCREENSHOT,TEMP_AFTER_SCREENSHOT)
img = cv2.imread(TEMP_AFTER_SCREENSHOT)
img1 = img[top_left[1]: bottom_right[1], top_left[0]: bottom_right[0]]
cv2.imwrite("MotionArea.jpg ", img1)

# driver.close()

Scroll function to find a button and We have added a process to take the difference of the image for false detection when the button is detected.

Next time, I would like to combine it with the recording function I made last time. Well then

Recommended Posts

Environmentally friendly scraping using image processing
[Image processing] Posterization
python image processing
Image processing 100 knocks ①
Scraping using Python
Image processing with MyHDL
Hinatazaka's blog image scraping
Flat Field image processing
Read digital image processing
Image segmentation using U-net
Image processing with Python
Image Processing with PIL
Scraping using Python 3.5 async / await
Image processing with Python (Part 2)
opencv-python Introduction to image processing
Image processing with PIL (Pillow)
Try using Jupyter's Docker image
Digital image processing (spatial filtering)
100 image processing knocks !! (011 --020) Early game
Scraping using Python 3.5 Async syntax
Image processing with Python (Part 1)
Cloud image prediction using convLSTM
Image collection by web scraping
Web scraping using Selenium (Python)
Image processing with Python (Part 3)
Image processing by python (Pillow)
Image Processing Collection in Python
Web scraping using AWS lambda
Implement reversi reversi processing using BitBoard
Image expansion and contraction processing
Using Python mode in Processing
[Python] Image processing with scikit-image
Understand the function of convolution using image processing as an example
[Image processing] Edge detection using Python and OpenCV makes Poo naked!