Cloud Dataflow Super Primer

This is a hands-on document for GCPUG Beginners Tokyo # 3.


This slide is on Qiita


bit.ly/dataflow-ho


What is Google Cloud Dataflow?

--Easy data processing ――It will balance the workload of the worker without permission. ――It works on GCE so you can do anything --Datalab (Jupyter) You can deploy from above!

** Simply put, a super cool version of MapReduce **


Tutorial repository

git clone https://github.com/hayatoy/dataflow-tutorial.git


Advance preparation

--Google Cloud Platform billing settings --Enable Dataflow API -Create a GCS Bucket -Create a dataset called testdataset in BigQuery --Please change the Project name. Replacing PROJECTID is faster.

That's it!


The following is the code explanation


Import Apache Beam

import apache_beam as beam

Dataflow basic settings

Specify the job name, project name, and temporary file location.

options = beam.utils.pipeline_options.PipelineOptions()
gcloud_options = options.view_as(
    beam.utils.pipeline_options.GoogleCloudOptions)
gcloud_options.job_name = 'dataflow-tutorial1'
gcloud_options.project = 'PROJECTID'
gcloud_options.staging_location = 'gs://PROJECTID/staging'
gcloud_options.temp_location = 'gs://PROJECTID/temp'

Dataflow scale settings

Set the maximum number of workers, machine type, etc. The disk size of the worker is ** large, 250GB (Batch) and 420GB (Streaming) by default **, so it is recommended to specify the required size here.

worker_options = options.view_as(beam.utils.pipeline_options.WorkerOptions)
worker_options.disk_size_gb = 20
worker_options.max_num_workers = 2
# worker_options.num_workers = 2
# worker_options.machine_type = 'n1-standard-8'
# worker_options.zone = 'asia-northeast1-a'

Switching the execution environment

-** DirectRunner: ** Run on local machine -** DataflowRunner: ** Run on Dataflow

options.view_as(beam.utils.pipeline_options.StandardOptions).runner = 'DirectRunner'
# options.view_as(beam.utils.pipeline_options.StandardOptions).runner = 'DataflowRunner'

Ready, pipeline example below







Pipeline part 1

Just read the file from GCS and write its contents to GCS

+----------------+
|                |
| Read GCS File  |
|                |
+-------+--------+
        |
        v
+-------+--------+
|                |
| Write GCS File |
|                |
+----------------+
p1 = beam.Pipeline(options=options)

(p1 | 'read' >> beam.io.ReadFromText('gs://dataflow-samples/shakespeare/kinglear.txt')
    | 'write' >> beam.io.WriteToText('gs://PROJECTID/test.txt', num_shards=1)
 )

p1.run().wait_until_finish()

Pipeline part 2

Just read the data from BigQuery and write its contents to GCS BigQuery dataset is below https://bigquery.cloud.google.com/table/bigquery-public-data:samples.shakespeare

+----------------+
|                |
| Read BigQuery  |
|                |
+-------+--------+
        |
        v
+-------+--------+
|                |
| Write GCS File |
|                |
+----------------+
p2 = beam.Pipeline(options=options)

query = 'SELECT * FROM [bigquery-public-data:samples.shakespeare] LIMIT 10'
(p2 | 'read' >> beam.io.Read(beam.io.BigQuerySource(project='PROJECTID', use_standard_sql=False, query=query))
    | 'write' >> beam.io.WriteToText('gs://PROJECTID/test2.txt', num_shards=1)
 )

p2.run().wait_until_finish()

Pipeline part 3

Read data from BigQuery and write data to BigQuery

+----------------+
|                |
| Read BigQuery  |
|                |
+-------+--------+
        |
        v
+-------+--------+
|                |
| Write BigQuery |
|                |
+----------------+
p3 = beam.Pipeline(options=options)

#Note: Create a dataset
query = 'SELECT * FROM [bigquery-public-data:samples.shakespeare] LIMIT 10'
(p3 | 'read' >> beam.io.Read(beam.io.BigQuerySource(project='PROJECTID', use_standard_sql=False, query=query))
    | 'write' >> beam.io.Write(beam.io.BigQuerySink(
        'testdataset.testtable1',
        schema='corpus_date:INTEGER, corpus:STRING, word:STRING, word_count:INTEGER',
        create_disposition=beam.io.BigQueryDisposition.CREATE_IF_NEEDED,
        write_disposition=beam.io.BigQueryDisposition.WRITE_TRUNCATE))
 )

p3.run().wait_until_finish()

Pipeline part 4

--Read data from BigQuery --Process the data --Write to BigQuery

+----------------+
|                |
| Read BigQuery  |
|                |
+-------+--------+
        |
        v
+-------+--------+
|                |
| Modify Element |
|                |
+----------------+
        |
        v
+-------+--------+
|                |
| Write BigQuery |
|                |
+----------------+
def modify_data1(element):
    # beam.Map is used to output one line for one line of input
    # element = {u'corpus_date': 0, u'corpus': u'sonnets', u'word': u'LVII', u'word_count': 1}

    corpus_upper = element['corpus'].upper()
    word_len = len(element['word'])

    return {'corpus_upper': corpus_upper,
            'word_len': word_len
            }


p4 = beam.Pipeline(options=options)

query = 'SELECT * FROM [bigquery-public-data:samples.shakespeare] LIMIT 10'
(p4 | 'read' >> beam.io.Read(beam.io.BigQuerySource(project='PROJECTID', use_standard_sql=False, query=query))
    | 'modify' >> beam.Map(modify_data1)
    | 'write' >> beam.io.Write(beam.io.BigQuerySink(
        'testdataset.testtable2',
        schema='corpus_upper:STRING, word_len:INTEGER',
        create_disposition=beam.io.BigQueryDisposition.CREATE_IF_NEEDED,
        write_disposition=beam.io.BigQueryDisposition.WRITE_TRUNCATE))
 )

p4.run().wait_until_finish()

Pipeline part 5

Example of splitting a branch

+----------------+
|                |
| Read BigQuery  |
|                |
+-------+--------+
        |
        +---------------------+
        |                     |
+-------v--------+    +-------v--------+
|                |    |                |
| Modify Element |    | Modify Element |
|                |    |                |
+-------+--------+    +-------+--------+
        |                     |
        +---------------------+
        |
+-------v--------+
|                |
| Flatten        |
|                |
+-------+--------+
        |
        |
+-------v--------+
|                |
| Save BigQuery  |
|                |
+----------------+
def modify1(element):
    # element = {u'corpus_date': 0, u'corpus': u'sonnets', u'word': u'LVII', u'word_count': 1}
    word_count = len(element['corpus'])
    count_type = 'corpus only'

    return {'word_count': word_count,
            'count_type': count_type
            }


def modify2(element):
    # element = {u'corpus_date': 0, u'corpus': u'sonnets', u'word': u'LVII', u'word_count': 1}
    word_count = len(element['word'])
    count_type = 'word only'

    return {'word_count': word_count,
            'count_type': count_type
            }


p5 = beam.Pipeline(options=options)

query = 'SELECT * FROM [bigquery-public-data:samples.shakespeare] LIMIT 10'
query_results = p5 | 'read' >> beam.io.Read(beam.io.BigQuerySource(
    project='PROJECTID', use_standard_sql=False, query=query))

#Pass BigQuery results to two branches
branch1 = query_results | 'modify1' >> beam.Map(modify1)
branch2 = query_results | 'modify2' >> beam.Map(modify2)

#Flatten the results from the branch
((branch1, branch2) | beam.Flatten()
                    | 'write' >> beam.io.Write(beam.io.BigQuerySink(
                        'testdataset.testtable3',
                        schema='word_count:INTEGER, count_type:STRING',
                        create_disposition=beam.io.BigQueryDisposition.CREATE_IF_NEEDED,
                        write_disposition=beam.io.BigQueryDisposition.WRITE_TRUNCATE))
 )

p5.run().wait_until_finish()

Pipeline 6

Use ** Group by **

def modify_data2(kvpair):
    #groupby passes a tuple of keys and a list of data with those keys
    # kvpair = (u'word only', [4, 4, 6, 6, 7, 7, 7, 7, 8, 9])

    return {'count_type': kvpair[0],
            'sum': sum(kvpair[1])
            }


p6 = beam.Pipeline(options=options)

query = 'SELECT * FROM [PROJECTID:testdataset.testtable3] LIMIT 20'
(p6 | 'read' >> beam.io.Read(beam.io.BigQuerySource(project='PROJECTID', use_standard_sql=False, query=query))
    | 'pair' >> beam.Map(lambda x: (x['count_type'], x['word_count']))
    | "groupby" >> beam.GroupByKey()
    | 'modify' >> beam.Map(modify_data2)
    | 'write' >> beam.io.Write(beam.io.BigQuerySink(
        'testdataset.testtable4',
        schema='count_type:STRING, sum:INTEGER',
        create_disposition=beam.io.BigQueryDisposition.CREATE_IF_NEEDED,
        write_disposition=beam.io.BigQueryDisposition.WRITE_TRUNCATE))
 )

p6.run().wait_until_finish()

Pipeline 7

Separate the section of ** GroupBy ** with ** Window **

def assign_timevalue(v):
    #Add a time stamp to the pcollection data
    #The latter window is divided based on this time stamp
    #Here, time stamps are put in with random numbers.
    import apache_beam.transforms.window as window
    import random
    import time
    return window.TimestampedValue(v, int(time.time()) + random.randint(0, 1))


def modify_data3(kvpair):
    #groupby passes a tuple of keys and a list of data with those keys
    #Since it is divided by window, the number of data is small
    # kvpair = (u'word only', [4, 4, 6, 6, 7])

    return {'count_type': kvpair[0],
            'sum': sum(kvpair[1])
            }


p7 = beam.Pipeline(options=options)

query = 'SELECT * FROM [PROJECTID:testdataset.testtable3] LIMIT 20'
(p7 | 'read' >> beam.io.Read(beam.io.BigQuerySource(project='PROJECTID', use_standard_sql=False, query=query))
    | "assign tv" >> beam.Map(assign_timevalue)
    | 'window' >> beam.WindowInto(beam.window.FixedWindows(1))
    | 'pair' >> beam.Map(lambda x: (x['count_type'], x['word_count']))
    | "groupby" >> beam.GroupByKey()
    | 'modify' >> beam.Map(modify_data3)
    | 'write' >> beam.io.Write(beam.io.BigQuerySink(
        'testdataset.testtable5',
        schema='count_type:STRING, sum:INTEGER',
        create_disposition=beam.io.BigQueryDisposition.CREATE_IF_NEEDED,
        write_disposition=beam.io.BigQueryDisposition.WRITE_TRUNCATE))
 )

p7.run().wait_until_finish()

Recommended Posts

Cloud Dataflow Super Primer
What is Google Cloud Dataflow?
Dataflow Primer wordcount and earlier
Run XGBoost with Cloud Dataflow (Python)
Run Cloud Dataflow (Python) from App Engine