python==3.8 plotly==4.10.0
Operate in bar mode whether to stack or see through
import plotly.graph_objects as go
df = px.data.tips()
fig = px.histogram(df, x="total_bill", y="tip", color="sex", marginal="rug", hover_data=df.columns)
fig.update_layout(barmode='overlay')
fig.update_traces(opacity=0.75)
fig.show()
import plotly.graph_objects as go
df = px.data.tips()
fig = px.histogram(df, x="total_bill", y="tip", color="sex", marginal="violin", hover_data=df.columns)
fig.update_layout(barmode='stack')
fig.update_traces(opacity=0.75)
fig.show()
import plotly.graph_objects as go
df = px.data.tips()
fig = go.Figure(data=[go.Histogram(x=df.tip.values, cumulative_enabled=True)])
fig.show()
Use figure_factory's displot to plot kde It's a little annoying Data needs to pass array as dict type
import plotly.figure_factory as ff
df = px.data.tips()
group_labels=["total"]
fig = ff.create_distplot([df["total_bill"].values], group_labels)
fig.show()
By passing it in a nested array, it will be color-coded naturally.
import plotly.figure_factory as ff
df = px.data.tips()
hist_data = [df.query("day=='Sun'").tip.values,
df.query("day=='Sat'").tip.values,
df.query("day=='Thur'").tip.values]
group_labels = ['Sun', 'Sat', 'Thur']
fig = ff.create_distplot(hist_data, group_labels, bin_size=.2)
fig.show()
import plotly.figure_factory as ff
df = px.data.tips()
hist_data = [df.query("day=='Sun'").tip.values,
df.query("day=='Sat'").tip.values,
df.query("day=='Thur'").tip.values]
group_labels = ['Sun', 'Sat', 'Thur']
fig = ff.create_distplot(hist_data, group_labels, bin_size=.2,show_hist=False)
fig.update_layout(title_text='only kde plot')
fig.show()
You can also specify colors, bin_size, show_curve, etc.
import plotly.express as px
df = px.data.iris()
fig = px.density_contour(df, x="sepal_width", y="sepal_length")
fig.show()
import plotly.express as px
df = px.data.iris()
fig = px.density_contour(df, x="sepal_width", y="sepal_length")
fig.update_traces(contours_coloring="fill", contours_showlabels = True)
fig.show()
import plotly.express as px
df = px.data.tips()
fig = go.Figure()
fig.add_trace(go.Histogram2dContour(
x = df['total_bill'].values,
y = df['tip'].values,
colorscale = 'Blues',
reversescale = True,
xaxis = 'x',
yaxis = 'y'
))
fig.show()
import plotly.express as px
df = px.data.iris()
fig = px.density_contour(df, x="sepal_width", y="sepal_length", color="species", marginal_x="rug", marginal_y="histogram")
fig.show()
heat map
import plotly.express as px
df = px.data.tips()
fig = px.density_heatmap(df, x="total_bill", y="tip", marginal_x="rug", marginal_y="histogram")
fig.show()
Recommended Posts