Solve 100th-order equations (no multiple solutions)

aaa.png

Verification of solution

In the previous Solving higher-order equations with 4 clusters I (no multiple solutions), a program to solve 10th-order equations (no multiple solutions) as shown above using 4 Raspberry Pi4B clusters. I made. (The graph above is drawn with matplotlib 3.3.3) This time it is a sequel or an appendix. However, only one Raspberry Pi 4B is used this time. And last time it was 10th order, but this time we will make a program to solve 100th order equation (no multiple solution).

First of all, we added the ** solution verification ** that was left unfinished last time, and completed the program to solve the tenth-order equation (without multiple solutions). This is a simple judgment method that uses the point where the sign of the y value changes between two points of x (the point that crosses the x-axis) as the solution. Programmatic changes have added faster @jit and 4 core multiprocessing. numba's @jit speeds up just by adding a line of @jit before the simple function written in the original python program attached to Raspberry OS with Desktop. You can use a local list. However, you can use a one-dimensional list, but not a two-dimensional list. Global variables and lists cannot be used. Also, if you are coding at high speed using numpy code, an error will occur. I got a lot of errors while creating the program, but this program can be used with @jit of numba (as of 2021JAN04), local 1D list, append, for loop, if conditional statement, args argument list reception, return result list The function is written with a simple structure of return. See the basic options @njit and multiprocessing in Last for installation details. This program is attached below.

eq-10ji-check-jit-multiprocessing.py


import time
from multiprocessing import Pool
#from numba import njit

#@njit(cache=True)
def calc_2s(i0,R_f,X_init,X_end,A0,A1,A2,A3,A4,A5,A6,A7,A8,A9,A10):
    Ypre=0
    totalsXY=[i0]
    for x0 in range(int(X_init), int(X_end)+1):
        X = x0/R_f
        Y = A0+A1*(X)**1+A2*(X)**2+A3*(X)**3+A4*(X)**4+A5*(X)**5+\
               A6*(X)**6+A7*(X)**7+A8*(X)**8+A9*(X)**9+A10*(X)**10

        if x0==int(X_init):
            Ypre=Y
        if Ypre * Y > 0:
            Ypre=Y
        else:
            if Y == 0.0:
                totalsXY.append(X)
                totalsXY.append(Y)
            else:
                Ypre=Y
                totalsXY.append(X)
                totalsXY.append(Y)
    return totalsXY


def wrapper_func(args):
    return calc_2s(*args)

def multi_processing_pool(Args_Lists):
    p = Pool(4)
    process_XY = p.map(wrapper_func, Args_Lists)
    p.close()
    return process_XY

if __name__=="__main__":


    print(f"pre-cache")
    x_Range_to   = 12
    r_f = 10
    f_range = x_Range_to * r_f
    a0=1.
    a1=0.
    a2=0.
    a3=0.
    a4=0.
    a5=0.
    a6=0.
    a7=0.
    a8=0.
    a9=0.
    a10=0.
    ArgsLists= [(i,r_f,i*f_range/4,(i+1)*f_range/4,\
                    a0,a1,a2,a3,a4,a5,a6,a7,a8,a9,a10) for i in range(4)]
    processXY = multi_processing_pool(ArgsLists)
    processXY.clear()
    
    print(f"Calculation Start")
    x_Range_to   = 12
    r_f = 1000000
    f_range = x_Range_to * r_f
    a0 = 3628801.0
    a1 =-10628640.0
    a2 = 12753576.0
    a3 =-8409500.0
    a4 = 3416930.0
    a5 =-902055.0
    a6 = 157773.0
    a7 =-18150.0
    a8 = 1320.0
    a9 =-55.0
    a10= 1.0
    initial_time=time.time()
    ArgsLists= [(i,r_f,i*f_range/4,(i+1)*f_range/4,\
                    a0,a1,a2,a3,a4,a5,a6,a7,a8,a9,a10) for i in range(4)]
    processXY = multi_processing_pool(ArgsLists)
    print(f"Calculation Finished")
   
    processXYstr = str(processXY)
    processXYstr = processXYstr.replace('[[', '')
    processXYstr = processXYstr.replace(']]', '')
    processesXYstr=processXYstr.split('], [')
    process0XYstr=processesXYstr[0]
    process1XYstr=processesXYstr[1]
    process2XYstr=processesXYstr[2]
    process3XYstr=processesXYstr[3]


    process0sXYstr=process0XYstr.split(', ')
    process1sXYstr=process1XYstr.split(', ')
    process2sXYstr=process2XYstr.split(', ')
    process3sXYstr=process3XYstr.split(', ')
    if   process0sXYstr[0]=='0' or process0sXYstr[0]=='0.0':
        ProcessAdatas=process0sXYstr.copy()
    elif process1sXYstr[0]=='0' or process1sXYstr[0]=='0.0':
        ProcessAdatas=process1sXYstr.copy()
    elif process2sXYstr[0]=='0' or process2sXYstr[0]=='0.0':
        ProcessAdatas=process2sXYstr.copy()
    elif process3sXYstr[0]=='0' or process3sXYstr[0]=='0.0':
        ProcessAdatas=process3sXYstr.copy()
    if   process0sXYstr[0]=='1' or process0sXYstr[0]=='1.0':
        ProcessBdatas=process0sXYstr.copy()
    elif process1sXYstr[0]=='1' or process1sXYstr[0]=='1.0':
        ProcessBdatas=process1sXYstr.copy()
    elif process2sXYstr[0]=='1' or process2sXYstr[0]=='1.0':
        ProcessBdatas=process2sXYstr.copy()
    elif process3sXYstr[0]=='1' or process3sXYstr[0]=='1.0':
        ProcessBdatas=process3sXYstr.copy()
    if   process0sXYstr[0]=='2' or process0sXYstr[0]=='2.0':
        ProcessCdatas=process0sXYstr.copy()
    elif process1sXYstr[0]=='2' or process1sXYstr[0]=='2.0':
        ProcessCdatas=process1sXYstr.copy()
    elif process2sXYstr[0]=='2' or process2sXYstr[0]=='2.0':
        ProcessCdatas=process2sXYstr.copy()
    elif process3sXYstr[0]=='2' or process3sXYstr[0]=='2.0':
        ProcessCdatas=process3sXYstr.copy()
    if   process0sXYstr[0]=='3' or process0sXYstr[0]=='3.0':
        ProcessDdatas=process0sXYstr.copy()
    elif process1sXYstr[0]=='3' or process1sXYstr[0]=='3.0':
        ProcessDdatas=process1sXYstr.copy()
    elif process2sXYstr[0]=='3' or process2sXYstr[0]=='3.0':
        ProcessDdatas=process2sXYstr.copy()
    elif process3sXYstr[0]=='3' or process3sXYstr[0]=='3.0':
        ProcessDdatas=process3sXYstr.copy()
    process0sXYstr.clear()
    process0XYstr=''
    process1sXYstr.clear()
    process1XYstr=''
    process2sXYstr.clear()
    process2XYstr=''
    process3sXYstr.clear()
    process3XYstr=''
    ProcessAdatas.pop(0)
    ProcessBdatas.pop(0)
    ProcessCdatas.pop(0)
    ProcessDdatas.pop(0)


    answersXY=[]
    for i in range(int(len(ProcessAdatas)/2)):
        answersXY.append((float(ProcessAdatas[2*i]),\
                          float(ProcessAdatas[2*i+1])))
    for i in range(int(len(ProcessBdatas)/2)):
        answersXY.append((float(ProcessBdatas[2*i]),\
                          float(ProcessBdatas[2*i+1])))
    for i in range(int(len(ProcessCdatas)/2)):
        answersXY.append((float(ProcessCdatas[2*i]),\
                          float(ProcessCdatas[2*i+1])))
    for i in range(int(len(ProcessDdatas)/2)):
        answersXY.append((float(ProcessDdatas[2*i]),\
                          float(ProcessDdatas[2*i+1])))


    print(f"Time :")
    print(str(time.time() - initial_time))
    print(f"Answers :")
    for i in range(len(answersXY)):
        print(answersXY[i])
    time.sleep(10)

Solve 100th-order equations (no multiple solutions)

I created a program to solve a 100th order equation (no multiple solution) using only one Raspberry Pi 4B. This time as well, I used a factorization formula whose solution is known in advance. y= (x- 0.950)(x- 0.951)(x- 0.952)(x- 0.953)(x- 0.954)× (x- 0.955)(x- 0.956)(x- 0.957)(x- 0.958)(x- 0.959)× (x- 0.960)(x- 0.961)(x- 0.962)(x- 0.963)(x- 0.964)× (x- 0.965)(x- 0.966)(x- 0.967)(x- 0.968)(x- 0.969)× (x- 0.970)(x- 0.971)(x- 0.972)(x- 0.973)(x- 0.974)× (x- 0.975)(x- 0.976)(x- 0.977)(x- 0.978)(x- 0.979)× (x- 0.980)(x- 0.981)(x- 0.982)(x- 0.983)(x- 0.984)× (x- 0.985)(x- 0.986)(x- 0.987)(x- 0.988)(x- 0.989)× (x- 0.990)(x- 0.991)(x- 0.992)(x- 0.993)(x- 0.994)× (x- 0.995)(x- 0.996)(x- 0.997)(x- 0.998)(x- 0.999)× (x- 1.000)(x- 1.001)(x- 1.002)(x- 1.003)(x- 1.004)× (x- 1.005)(x- 1.006)(x- 1.007)(x- 1.008)(x- 1.009)× (x- 1.010)(x- 1.011)(x- 1.012)(x- 1.013)(x- 1.014)× (x- 1.015)(x- 1.016)(x- 1.017)(x- 1.018)(x- 1.019)× (x- 1.020)(x- 1.021)(x- 1.022)(x- 1.023)(x- 1.024)× (x- 1.025)(x- 1.026)(x- 1.027)(x- 1.028)(x- 1.029)× (x- 1.030)(x- 1.031)(x- 1.032)(x- 1.033)(x- 1.034)× (x- 1.035)(x- 1.036)(x- 1.037)(x- 1.038)(x- 1.039)× (x- 1.040)(x- 1.041)(x- 1.042)(x- 1.043)(x- 1.044)× (x- 1.045)(x- 1.046)(x- 1.047)(x- 1.048)(x- 1.049) = 0

1.00 is 1.00 even if it is raised to the 100th power. 1.00 The number of digits in the integer part above the decimal point does not increase even if the number near the pole is raised to the 100th power. From this, you can use all the significant digits of python's double precision floating point number after the decimal point. This time, I prepared the above 100th order equation. (If the number of digits after the decimal point is too small, on the contrary, the number of digits after the decimal point will be out of the range of the number of digits of the double precision floating point, so I'm not sure if the prepared formula is optimal.)

The program that solves this 100th-order equation is shown below. Except for the peculiarity that the 100th-order equation to be calculated has a solution only in the vicinity of 1.00 poles, the program in the 10th-order equation described above and the program itself are almost the same. (Although the number of variables has increased from 11 in the 10th-order equation to 100 in the 100th-order equation)

eq-100ji-normal.py


import time
from multiprocessing import Pool
#from numba import njit

#@njit(cache=True)
def calc_2s(i0,x_Range_from,R_f,X_init,X_end,\
                A0, A1, A2, A3, A4, A5, A6, A7, A8, A9,\
                A10,A11,A12,A13,A14,A15,A16,A17,A18,A19,\
                A20,A21,A22,A23,A24,A25,A26,A27,A28,A29,\
                A30,A31,A32,A33,A34,A35,A36,A37,A38,A39,\
                A40,A41,A42,A43,A44,A45,A46,A47,A48,A49,\
                A50,A51,A52,A53,A54,A55,A56,A57,A58,A59,\
                A60,A61,A62,A63,A64,A65,A66,A67,A68,A69,\
                A70,A71,A72,A73,A74,A75,A76,A77,A78,A79,\
                A80,A81,A82,A83,A84,A85,A86,A87,A88,A89,\
                A90,A91,A92,A93,A94,A95,A96,A97,A98,A99):
    
    totalsXY=[i0]
    Ypre=0
    for x0 in range(int(X_init), int(X_end)+1):
        X = x_Range_from + (x0/R_f)
        Y = (X -A0)*(X -A1)*(X -A2)*(X -A3)*(X -A4)*\
            (X -A5)*(X -A6)*(X -A7)*(X -A8)*(X -A9)*\
            (X-A10)*(X-A11)*(X-A12)*(X-A13)*(X-A14)*\
            (X-A15)*(X-A16)*(X-A17)*(X-A18)*(X-A19)*\
            (X-A20)*(X-A21)*(X-A22)*(X-A23)*(X-A24)*\
            (X-A25)*(X-A26)*(X-A27)*(X-A28)*(X-A29)*\
            (X-A30)*(X-A31)*(X-A32)*(X-A33)*(X-A34)*\
            (X-A35)*(X-A36)*(X-A37)*(X-A38)*(X-A39)*\
            (X-A40)*(X-A41)*(X-A42)*(X-A43)*(X-A44)*\
            (X-A45)*(X-A46)*(X-A47)*(X-A48)*(X-A49)*\
            (X-A50)*(X-A51)*(X-A52)*(X-A53)*(X-A54)*\
            (X-A55)*(X-A56)*(X-A57)*(X-A58)*(X-A59)*\
            (X-A60)*(X-A61)*(X-A62)*(X-A63)*(X-A64)*\
            (X-A65)*(X-A66)*(X-A67)*(X-A68)*(X-A69)*\
            (X-A70)*(X-A71)*(X-A72)*(X-A73)*(X-A74)*\
            (X-A75)*(X-A76)*(X-A77)*(X-A78)*(X-A79)*\
            (X-A80)*(X-A81)*(X-A82)*(X-A83)*(X-A84)*\
            (X-A85)*(X-A86)*(X-A87)*(X-A88)*(X-A89)*\
            (X-A90)*(X-A91)*(X-A92)*(X-A93)*(X-A94)*\
            (X-A95)*(X-A96)*(X-A97)*(X-A98)*(X-A99)
        if x0==int(X_init):
            Ypre=Y
        if Ypre * Y > 0:
            Ypre=Y
        else:
            if Y == 0.0:
                totalsXY.append(X)
                totalsXY.append(Y)
            else:
                Ypre=Y
                totalsXY.append(X)
                totalsXY.append(Y)
    return totalsXY


def wrapper_func(args):
    return calc_2s(*args)

def multi_processing_pool(Args_Lists):
    p = Pool(4)
    process_XY = p.map(wrapper_func, Args_Lists)
    p.close()
    return process_XY

if __name__=="__main__":



    ''' INPUT START '''
    x_range_from = 0.9
    x_range_to   = 1.1
    r_f = 2000
    
    a0 = 0.950
    a1 = 0.951
    a2 = 0.952
    a3 = 0.953
    a4 = 0.954
    a5 = 0.955
    a6 = 0.956
    a7 = 0.957
    a8 = 0.958
    a9 = 0.959
    a10= 0.960
    a11= 0.961
    a12= 0.962
    a13= 0.963
    a14= 0.964
    a15= 0.965
    a16= 0.966
    a17= 0.967
    a18= 0.968
    a19= 0.969
    a20= 0.970
    a21= 0.972
    a22= 0.972
    a23= 0.973
    a24= 0.974
    a25= 0.975
    a26= 0.976
    a27= 0.977
    a28= 0.978
    a29= 0.979
    a30= 0.980
    a31= 0.981
    a32= 0.982
    a33= 0.983
    a34= 0.984
    a35= 0.985
    a36= 0.986
    a37= 0.987
    a38= 0.988
    a39= 0.989
    a40= 0.990
    a41= 0.991
    a42= 0.992
    a43= 0.993
    a44= 0.994
    a45= 0.995
    a46= 0.996
    a47= 0.997
    a48= 0.998
    a49= 0.999
    a50= 1.000
    a51= 1.001
    a52= 1.002
    a53= 1.003
    a54= 1.004
    a55= 1.005
    a56= 1.006
    a57= 1.007
    a58= 1.008
    a59= 1.009
    a60= 1.010
    a61= 1.011
    a62= 1.012
    a63= 1.013
    a64= 1.014
    a65= 1.015
    a66= 1.016
    a67= 1.017
    a68= 1.018
    a69= 1.019
    a70= 1.020
    a71= 1.021
    a72= 1.022
    a73= 1.023
    a74= 1.024
    a75= 1.025
    a76= 1.026
    a77= 1.027
    a78= 1.028
    a79= 1.029
    a80= 1.030
    a81= 1.031
    a82= 1.032
    a83= 1.033
    a84= 1.034
    a85= 1.035
    a86= 1.036
    a87= 1.037
    a88= 1.038
    a89= 1.039
    a90= 1.040
    a91= 1.041
    a92= 1.042
    a93= 1.043
    a94= 1.044
    a95= 1.045
    a96= 1.046
    a97= 1.047
    a98= 1.048
    a99= 1.049
    ''' INPUT END '''

    
    print(f"Calculation Start")
    initial_time=time.time()
    f_range = (x_range_to - x_range_from) * r_f
    ArgsLists= [(i,x_range_from,r_f,i*f_range/4,(i+1)*f_range/4,\
                    a0, a1, a2, a3, a4, a5, a6, a7, a8, a9,\
                    a10,a11,a12,a13,a14,a15,a16,a17,a18,a19,\
                    a20,a21,a22,a23,a24,a25,a26,a27,a28,a29,\
                    a30,a31,a32,a33,a34,a35,a36,a37,a38,a39,\
                    a40,a41,a42,a43,a44,a45,a46,a47,a48,a49,\
                    a50,a51,a52,a53,a54,a55,a56,a57,a58,a59,\
                    a60,a61,a62,a63,a64,a65,a66,a67,a68,a69,\
                    a70,a71,a72,a73,a74,a75,a76,a77,a78,a79,\
                    a80,a81,a82,a83,a84,a85,a86,a87,a88,a89,\
                    a90,a91,a92,a93,a94,a95,a96,a97,a98,a99) for i in range(4)]
    processXY = multi_processing_pool(ArgsLists)
    print(f"Calculation Finished")
   
    processXYstr = str(processXY)
    processXYstr = processXYstr.replace('[[', '')
    processXYstr = processXYstr.replace(']]', '')
    processesXYstr=processXYstr.split('], [')
    process0XYstr=processesXYstr[0]
    process1XYstr=processesXYstr[1]
    process2XYstr=processesXYstr[2]
    process3XYstr=processesXYstr[3]


    if process0XYstr[0]=='0' or process0XYstr[0]=='0.0':
        process0sXYstr=process0XYstr.split(', ')
    elif process1XYstr[0]=='0' or process1XYstr[0]=='0.0':
        process0sXYstr=process1XYstr.split(', ')
    elif process2XYstr[0]=='0' or process2XYstr[0]=='0.0':
        process0sXYstr=process2XYstr.split(', ')
    elif process3XYstr[0]=='0' or process3XYstr[0]=='0.0':
        process0sXYstr=process3XYstr.split(', ')
    if process0XYstr[0]=='1' or process0XYstr[0]=='1.0':
        process1sXYstr=process0XYstr.split(', ')
    elif process1XYstr[0]=='1' or process1XYstr[0]=='1.0':
        process1sXYstr=process1XYstr.split(', ')
    elif process2XYstr[0]=='1' or process2XYstr[0]=='1.0':
        process1sXYstr=process2XYstr.split(', ')
    elif process3XYstr[0]=='1' or process3XYstr[0]=='1.0':
        process1sXYstr=process3XYstr.split(', ')
    if process0XYstr[0]=='2' or process0XYstr[0]=='2.0':
        process2sXYstr=process0XYstr.split(', ')
    elif process1XYstr[0]=='2' or process1XYstr[0]=='2.0':
        process2sXYstr=process1XYstr.split(', ')
    elif process2XYstr[0]=='2' or process2XYstr[0]=='2.0':
        process2sXYstr=process2XYstr.split(', ')
    elif process3XYstr[0]=='2' or process3XYstr[0]=='2.0':
        process2sXYstr=process3XYstr.split(', ')
    if process0XYstr[0]=='3' or process0XYstr[0]=='3.0':
        process3sXYstr=process0XYstr.split(', ')
    elif process1XYstr[0]=='3' or process1XYstr[0]=='3.0':
        process3sXYstr=process1XYstr.split(', ')
    elif process2XYstr[0]=='3' or process2XYstr[0]=='3.0':
        process3sXYstr=process2XYstr.split(', ')
    elif process3XYstr[0]=='3' or process3XYstr[0]=='3.0':
        process3sXYstr=process3XYstr.split(', ')
    process0sXYstr.pop(0)
    process1sXYstr.pop(0)
    process2sXYstr.pop(0)
    process3sXYstr.pop(0)


    answersXY=[]
    for i in range(int(len(process0sXYstr)/2)):
        answersXY.append((float(process0sXYstr[2*i]),\
                          float(process0sXYstr[2*i+1])))
    for i in range(int(len(process1sXYstr)/2)):
        answersXY.append((float(process1sXYstr[2*i]),\
                          float(process1sXYstr[2*i+1])))
    for i in range(int(len(process2sXYstr)/2)):
        answersXY.append((float(process2sXYstr[2*i]),\
                          float(process2sXYstr[2*i+1])))
    for i in range(int(len(process3sXYstr)/2)):
        answersXY.append((float(process3sXYstr[2*i]),\
                          float(process3sXYstr[2*i+1])))

    print(f"Time :")
    print(str(time.time() - initial_time))
    print(f"Answers :")
    for i in range(len(answersXY)):
        print(answersXY[i])
    time.sleep(10)

When the above program is executed, 100 solutions + 100 candidates will be lined up. The following figure is a graph of this 100th-order equation drawn by matplotlib. matplotlib can easily draw even 100th-order equations. You can see that the upper graph crosses the x-axis at 0.950 and 1.050. The middle looks straight. There should be 100 solutions, but I don't know what. The lower graph is an enlargement of the y-axis. By repeating the vertical movement across the x-axis, x = 1.000 is approaching 0 as much as possible. It certainly crosses the x-axis 100 times. bbb.png matplotlib is a program like the one below at the stage of the first drawing.

eq-100ji-plot-zoom.py


import matplotlib.pyplot as plt
import numpy as np

x = np.linspace(0.949, 1.051, 1000)
y = (x-0.950)*(x-0.951)*(x-0.952)*(x-0.953)*(x-0.954)*(x-0.955)*(x-0.956)*(x-0.957)*(x-0.958)*(x-0.959)*\
    (x-0.960)*(x-0.961)*(x-0.962)*(x-0.963)*(x-0.964)*(x-0.965)*(x-0.966)*(x-0.967)*(x-0.968)*(x-0.969)*\
    (x-0.970)*(x-0.971)*(x-0.972)*(x-0.973)*(x-0.974)*(x-0.975)*(x-0.976)*(x-0.977)*(x-0.978)*(x-0.979)*\
    (x-0.980)*(x-0.981)*(x-0.982)*(x-0.983)*(x-0.984)*(x-0.985)*(x-0.986)*(x-0.987)*(x-0.988)*(x-0.989)*\
    (x-0.990)*(x-0.991)*(x-0.992)*(x-0.993)*(x-0.994)*(x-0.995)*(x-0.996)*(x-0.997)*(x-0.998)*(x-0.999)*\
    (x-1.000)*(x-1.001)*(x-1.002)*(x-1.003)*(x-1.004)*(x-1.005)*(x-1.006)*(x-1.007)*(x-1.008)*(x-1.009)*\
    (x-1.010)*(x-1.011)*(x-1.012)*(x-1.013)*(x-1.014)*(x-1.015)*(x-1.016)*(x-1.017)*(x-1.018)*(x-1.019)*\
    (x-1.020)*(x-1.021)*(x-1.022)*(x-1.023)*(x-1.024)*(x-1.025)*(x-1.026)*(x-1.027)*(x-1.028)*(x-1.029)*\
    (x-1.030)*(x-1.031)*(x-1.032)*(x-1.033)*(x-1.034)*(x-1.035)*(x-1.036)*(x-1.037)*(x-1.038)*(x-1.039)*\
    (x-1.040)*(x-1.041)*(x-1.042)*(x-1.043)*(x-1.044)*(x-1.045)*(x-1.046)*(x-1.047)*(x-1.048)*(x-1.049)

plt.plot([0.949,1.051],[0,0],C="Gray")
plt.plot(x, y,C="Red")
plt.ylim([-2e-171,2e-171])
plt.xlim([0.949,1.051])
plt.xlabel('x')
plt.ylabel('y')
plt.title("Zoom up y axis")
plt.show()

This special algebraic equation, which has a solution only near 1.00, could be solved by the Raspberry Pi python program, even if it was a 100th order equation.

Thank you for watching until the end.

Unfortunately, I couldn't create a program for the higher-order equations with multiple solutions that I had planned for the next time, so I canceled it. I'm also looking for other themes and trying to program with python on Raspberry Pi.

This time, I agree with the purpose of Qiita and post it, so you are free to copy or modify the published program. There are no copyright issues.

However, when using the Raspberry Pi 4B, a particularly large heat sink is required for the CPU. In the case of this program, where LAN communication is infrequent, the LAN chip does not get hot. However, if the calculation time continues, a considerable amount of power is used as can be seen from the intense heat generated by the CPU. The small black chip behind the power USB C type also gets hot, so you also need a fan flow.

Recommended Posts

Solve 100th-order equations (no multiple solutions)
Solve higher-order equations with integer type (no multiple solutions)
Solving higher-order equations in a 4-unit cluster I (no multiple solutions)
Solving higher-order equations with integer type (no multiple solution) Manager