I will do my best to count on the five equal brides (true face)
Learn the techniques of pytorch and deep learning while guessing the bride in five equal parts
The pytorch code used this time is basically here
https://github.com/yoyoyo-yo/DeepLearningMugenKnock
** This can be spoiled by some viewers, so if you don't like it, close the window immediately **
Recently, the author declared that the comic would end in 14 volumes, and it seemed that the progress was amazing in terms of story.
I'm in May, so I believe it's May. We will do this by proving that it is May with Deep Learning and hoping that the author will see it and it will be the end of May from now on.
I did something similar to the past. Use deep learning to predict the future bride of a five-quarter bride
Here, YOLO-v3 (keras, https://github.com/qqwweee/keras-yolo3) was used for detection and recognition.
For the learning data, I opened the first volume of the comic on my Kindle and repeated screenshots β annotations (dying).
In YOLO-v3, which handles detection and recognition at the same time, the result is May.
This time, cut out the face part further and bring it in the direction recognized by CNN.
For that purpose, it is necessary to collect face images, so I cut out the face part with YOLO-v3. After that, I cleaned the data visually and gathered.
Number of images | |
---|---|
Ichihana | 273 |
Nino | 447 |
Miku | 289 |
Yotsuba | 397 |
May | 443 |
There are many in May and Nino, but then there are many in Yotsuba.
The captured image looks like this
Ichihana | Nino | Miku | Yotsuba | May |
---|---|---|---|---|
With this, 250 images are used as training data and 20 images are used as test data.
It was reduced to 5 class classification by Res101.
The code looks like this. To use this code, make the following directory structure
Gotobun --- Res101.py
|- Train -+- Ichika --- ***.jpg
+- Nino --- ***.jpg
+- Miku --- ***.jpg
+- Yotsuba --- ***.jpg
+- Itsuki --- ***.jpg
|- Test --- ...
Res101.py
import torch
import torch.nn.functional as F
import argparse
import cv2
import numpy as np
from glob import glob
import copy
import matplotlib.pyplot as plt
import seaborn as sns
CLS = ['Ichika', 'Nino', 'Miku', 'Yotsuba', 'Itsuki']
num_classes = len(CLS)
img_height, img_width = 128, 128
channel = 3
# GPU
GPU = True
device = torch.device("cuda" if GPU and torch.cuda.is_available() else "cpu")
# random seed
torch.manual_seed(0)
class ResBlock(torch.nn.Module):
def __init__(self, in_f, f_1, out_f, stride=1):
super(ResBlock, self).__init__()
self.stride = stride
self.fit_dim = False
self.block = torch.nn.Sequential(
torch.nn.Conv2d(in_f, f_1, kernel_size=1, padding=0, stride=stride),
torch.nn.BatchNorm2d(f_1),
torch.nn.ReLU(),
torch.nn.Conv2d(f_1, f_1, kernel_size=3, padding=1, stride=1),
torch.nn.BatchNorm2d(f_1),
torch.nn.ReLU(),
torch.nn.Conv2d(f_1, out_f, kernel_size=1, padding=0, stride=1),
torch.nn.BatchNorm2d(out_f),
torch.nn.ReLU()
)
if in_f != out_f:
self.fit_conv = torch.nn.Conv2d(in_f, out_f, kernel_size=1, padding=0, stride=1)
self.fit_bn = torch.nn.BatchNorm2d(out_f)
self.fit_dim = True
def forward(self, x):
res_x = self.block(x)
if self.fit_dim:
x = self.fit_conv(x)
x = self.fit_bn(x)
x = F.relu(x)
if self.stride == 2:
x = F.max_pool2d(x, 2, stride=2)
x = torch.add(res_x, x)
x = F.relu(x)
return x
class Res101(torch.nn.Module):
def __init__(self):
super(Res101, self).__init__()
self.conv1 = torch.nn.Conv2d(channel, 64, kernel_size=7, padding=3, stride=2)
self.bn1 = torch.nn.BatchNorm2d(64)
self.resblock2_1 = ResBlock(64, 64, 256)
self.resblock2_2 = ResBlock(256, 64, 256)
self.resblock2_3 = ResBlock(256, 64, 256)
self.resblock3_1 = ResBlock(256, 128, 512, stride=2)
self.resblock3_2 = ResBlock(512, 128, 512)
self.resblock3_3 = ResBlock(512, 128, 512)
self.resblock3_4 = ResBlock(512, 128, 512)
self.resblock4_1 = ResBlock(512, 256, 1024, stride=2)
block = []
for _ in range(22):
block.append(ResBlock(1024, 256, 1024))
self.resblock4s = torch.nn.Sequential(*block)
self.resblock5_1 = ResBlock(1024, 512, 2048, stride=2)
self.resblock5_2 = ResBlock(2048, 512, 2048)
self.resblock5_3 = ResBlock(2048, 512, 2048)
self.linear = torch.nn.Linear(2048, num_classes)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = F.relu(x)
x = F.max_pool2d(x, 3, padding=1, stride=2)
x = self.resblock2_1(x)
x = self.resblock2_2(x)
x = self.resblock2_3(x)
x = self.resblock3_1(x)
x = self.resblock3_2(x)
x = self.resblock3_3(x)
x = self.resblock3_4(x)
x = self.resblock4_1(x)
x = self.resblock4s(x)
x = self.resblock5_1(x)
x = self.resblock5_2(x)
x = self.resblock5_3(x)
x = F.avg_pool2d(x, [img_height//32, img_width//32], padding=0, stride=1)
x = x.view(list(x.size())[0], -1)
x = self.linear(x)
x = F.softmax(x, dim=1)
return x
# get train data
def data_load(path, hf=False, vf=False, rot=False):
xs = []
ts = []
paths = []
for dir_path in glob(path + '/*'):
for path in glob(dir_path + '/*'):
x = cv2.imread(path)
x = cv2.resize(x, (img_width, img_height)).astype(np.float32)
x /= 255.
x = x[..., ::-1]
xs.append(x)
for i, cls in enumerate(CLS):
if cls in path:
t = i
ts.append(t)
paths.append(path)
if hf:
xs.append(x[:, ::-1])
ts.append(t)
paths.append(path)
if vf:
xs.append(x[::-1])
ts.append(t)
paths.append(path)
if hf and vf:
xs.append(x[::-1, ::-1])
ts.append(t)
paths.append(path)
if rot != False:
angle = rot
scale = 1
# show
a_num = 360 // rot
w_num = np.ceil(np.sqrt(a_num))
h_num = np.ceil(a_num / w_num)
count = 1
#plt.subplot(h_num, w_num, count)
#plt.axis('off')
#plt.imshow(x)
#plt.title("angle=0")
while angle < 360:
_h, _w, _c = x.shape
max_side = max(_h, _w)
tmp = np.zeros((max_side, max_side, _c))
tx = int((max_side - _w) / 2)
ty = int((max_side - _h) / 2)
tmp[ty: ty+_h, tx: tx+_w] = x.copy()
M = cv2.getRotationMatrix2D((max_side/2, max_side/2), angle, scale)
_x = cv2.warpAffine(tmp, M, (max_side, max_side))
_x = _x[tx:tx+_w, ty:ty+_h]
xs.append(_x)
ts.append(t)
paths.append(path)
# show
#count += 1
#plt.subplot(h_num, w_num, count)
#plt.imshow(_x)
#plt.axis('off')
#plt.title("angle={}".format(angle))
angle += rot
#plt.show()
xs = np.array(xs, dtype=np.float32)
ts = np.array(ts, dtype=np.int)
xs = xs.transpose(0,3,1,2)
return xs, ts, paths
# train
def train():
# model
model = Res101().to(device)
opt = torch.optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
model.train()
xs, ts, paths = data_load('Train/', hf=True, vf=True, rot=10)
# training
mb = 64
mbi = 0
train_ind = np.arange(len(xs))
np.random.seed(0)
np.random.shuffle(train_ind)
loss_fn = torch.nn.CrossEntropyLoss()
for i in range(10000):
if mbi + mb > len(xs):
mb_ind = copy.copy(train_ind)[mbi:]
np.random.shuffle(train_ind)
mb_ind = np.hstack((mb_ind, train_ind[:(mb-(len(xs)-mbi))]))
else:
mb_ind = train_ind[mbi: mbi+mb]
mbi += mb
x = torch.tensor(xs[mb_ind], dtype=torch.float).to(device)
t = torch.tensor(ts[mb_ind], dtype=torch.long).to(device)
opt.zero_grad()
y = model(x)
#y = F.log_softmax(y, dim=1)
loss = loss_fn(y, t)
loss.backward()
opt.step()
pred = y.argmax(dim=1, keepdim=True)
acc = pred.eq(t.view_as(pred)).sum().item() / mb
if (i + 1) % 10 == 0:
print("iter >>", i+1, ', loss >>', loss.item(), ', accuracy >>', acc)
torch.save(model.state_dict(), 'Res101.pt')
# test
def test():
model = Res101().to(device)
model.eval()
model.load_state_dict(torch.load('Res101.pt', map_location=torch.device(device)))
xs, ts, paths = data_load('Test/')
Matrix = np.zeros([5, 5])
for i in range(len(paths)):
x = xs[i]
t = ts[i]
path = paths[i]
x = np.expand_dims(x, axis=0)
x = torch.tensor(x, dtype=torch.float).to(device)
pred = model(x)
pred = pred.detach().cpu().numpy()[0]
Matrix[t, pred.argmax()] += 1
print("in {}, predict >> {}, probabilities >> {}".format(path, CLS[pred.argmax()], pred))
print(Matrix)
#plt.imshow(Matrix)
sns.heatmap(Matrix, square=True, annot=True)
plt.show()
def arg_parse():
parser = argparse.ArgumentParser(description='CNN implemented with Keras')
parser.add_argument('--train', dest='train', action='store_true')
parser.add_argument('--test', dest='test', action='store_true')
args = parser.parse_args()
return args
# main
if __name__ == '__main__':
args = arg_parse()
if args.train:
train()
if args.test:
test()
if not (args.train or args.test):
print("please select train or test flag")
print("train: python main.py --train")
print("test: python main.py --test")
print("both: python main.py --train --test")
Honestly, the number of learnings became annoying on the way, so it may not be optimal.
If you make a table with correct answer on the vertical axis and prediction on the horizontal axis, it looks like this, it is about (Accuracy 70%)
Ichihana | Nino | Miku | Yotsuba | May |
---|---|---|---|---|
15% | 40% | 15% | 15% | 15% |
Hmm? Nino? ??
Ichihana | Nino | Miku | Yotsuba | May |
---|---|---|---|---|
15% | 40% | 15% | 15% | 15% |
Grad-Cam
Use Grad-CAM to visualize CNN decisions.
The code is
import torch
import torch.nn.functional as F
import argparse
import cv2
import numpy as np
from glob import glob
import copy
import matplotlib.pyplot as plt
import matplotlib.cm as cm
from collections import OrderedDict
Class_label = ['Ichika', 'Nino', 'Miku', 'Yotsuba', 'Itsuki']
Class_N = len(Class_label)
img_height, img_width = 128, 128
channel = 3
# GPU
GPU = False
device = torch.device("cuda" if GPU and torch.cuda.is_available() else "cpu")
# random seed
torch.manual_seed(0)
class ResBlock(torch.nn.Module):
def __init__(self, in_f, f_1, out_f, stride=1):
super(ResBlock, self).__init__()
self.stride = stride
self.fit_dim = False
self.block = torch.nn.Sequential(
torch.nn.Conv2d(in_f, f_1, kernel_size=1, padding=0, stride=stride),
torch.nn.BatchNorm2d(f_1),
torch.nn.ReLU(),
torch.nn.Conv2d(f_1, f_1, kernel_size=3, padding=1, stride=1),
torch.nn.BatchNorm2d(f_1),
torch.nn.ReLU(),
torch.nn.Conv2d(f_1, out_f, kernel_size=1, padding=0, stride=1),
torch.nn.BatchNorm2d(out_f),
torch.nn.ReLU()
)
if in_f != out_f:
self.fit_conv = torch.nn.Conv2d(in_f, out_f, kernel_size=1, padding=0, stride=1)
self.fit_bn = torch.nn.BatchNorm2d(out_f)
self.fit_dim = True
def forward(self, x):
res_x = self.block(x)
if self.fit_dim:
x = self.fit_conv(x)
x = self.fit_bn(x)
x = F.relu(x)
if self.stride == 2:
x = F.max_pool2d(x, 2, stride=2)
x = torch.add(res_x, x)
x = F.relu(x)
return x
class Res101(torch.nn.Module):
def __init__(self):
super(Res101, self).__init__()
self.conv1 = torch.nn.Conv2d(channel, 64, kernel_size=7, padding=3, stride=2)
self.bn1 = torch.nn.BatchNorm2d(64)
self.resblock2_1 = ResBlock(64, 64, 256)
self.resblock2_2 = ResBlock(256, 64, 256)
self.resblock2_3 = ResBlock(256, 64, 256)
self.resblock3_1 = ResBlock(256, 128, 512, stride=2)
self.resblock3_2 = ResBlock(512, 128, 512)
self.resblock3_3 = ResBlock(512, 128, 512)
self.resblock3_4 = ResBlock(512, 128, 512)
self.resblock4_1 = ResBlock(512, 256, 1024, stride=2)
block = []
for _ in range(22):
block.append(ResBlock(1024, 256, 1024))
self.resblock4s = torch.nn.Sequential(*block)
self.resblock5_1 = ResBlock(1024, 512, 2048, stride=2)
self.resblock5_2 = ResBlock(2048, 512, 2048)
self.resblock5_3 = ResBlock(2048, 512, 2048)
self.linear = torch.nn.Linear(2048, Class_N)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = F.relu(x)
x = F.max_pool2d(x, 3, padding=1, stride=2)
x = self.resblock2_1(x)
x = self.resblock2_2(x)
x = self.resblock2_3(x)
x = self.resblock3_1(x)
x = self.resblock3_2(x)
x = self.resblock3_3(x)
x = self.resblock3_4(x)
x = self.resblock4_1(x)
x = self.resblock4s(x)
x = self.resblock5_1(x)
x = self.resblock5_2(x)
x = self.resblock5_3(x)
x = F.avg_pool2d(x, [img_height//32, img_width//32], padding=0, stride=1)
x = x.view(list(x.size())[0], -1)
x = self.linear(x)
x = F.softmax(x, dim=1)
return x
# get train data
def data_load(path, hf=False, vf=False, rot=False):
xs = []
ts = []
paths = []
for dir_path in glob(path + '/*'):
for path in glob(dir_path + '/*'):
x = cv2.imread(path)
x = cv2.resize(x, (img_width, img_height)).astype(np.float32)
x /= 255.
x = x[..., ::-1]
xs.append(x)
t = -1
for i, _Class_label in enumerate(Class_label):
if _Class_label in path:
t = i
ts.append(t)
paths.append(path)
if hf:
xs.append(x[:, ::-1])
ts.append(t)
paths.append(path)
if vf:
xs.append(x[::-1])
ts.append(t)
paths.append(path)
if hf and vf:
xs.append(x[::-1, ::-1])
ts.append(t)
paths.append(path)
if rot != False:
angle = rot
scale = 1
# show
a_num = 360 // rot
w_num = np.ceil(np.sqrt(a_num))
h_num = np.ceil(a_num / w_num)
count = 1
#plt.subplot(h_num, w_num, count)
#plt.axis('off')
#plt.imshow(x)
#plt.title("angle=0")
while angle < 360:
_h, _w, _c = x.shape
max_side = max(_h, _w)
tmp = np.zeros((max_side, max_side, _c))
tx = int((max_side - _w) / 2)
ty = int((max_side - _h) / 2)
tmp[ty: ty+_h, tx: tx+_w] = x.copy()
M = cv2.getRotationMatrix2D((max_side/2, max_side/2), angle, scale)
_x = cv2.warpAffine(tmp, M, (max_side, max_side))
_x = _x[tx:tx+_w, ty:ty+_h]
xs.append(_x)
ts.append(t)
paths.append(path)
# show
#count += 1
#plt.subplot(h_num, w_num, count)
#plt.imshow(_x)
#plt.axis('off')
#plt.title("angle={}".format(angle))
angle += rot
#plt.show()
xs = np.array(xs, dtype=np.float32)
ts = np.array(ts, dtype=np.int)
xs = xs.transpose(0,3,1,2)
return xs, ts, paths
# train
def train():
# model
model = Res101().to(device)
opt = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.9)
model.train()
xs, ts, paths = data_load('../Dataset/train/images/', hf=True, vf=True, rot=10)
# training
mb = 32
mbi = 0
train_ind = np.arange(len(xs))
np.random.seed(0)
np.random.shuffle(train_ind)
loss_fn = torch.nn.NLLLoss()
for i in range(500):
if mbi + mb > len(xs):
mb_ind = copy.copy(train_ind)[mbi:]
np.random.shuffle(train_ind)
mb_ind = np.hstack((mb_ind, train_ind[:(mb-(len(xs)-mbi))]))
else:
mb_ind = train_ind[mbi: mbi+mb]
mbi += mb
x = torch.tensor(xs[mb_ind], dtype=torch.float).to(device)
t = torch.tensor(ts[mb_ind], dtype=torch.long).to(device)
opt.zero_grad()
y = model(x)
#y = F.log_softmax(y, dim=1)
loss = loss_fn(torch.log(y), t)
loss.backward()
opt.step()
pred = y.argmax(dim=1, keepdim=True)
acc = pred.eq(t.view_as(pred)).sum().item() / mb
if (i + 1) % 50 == 0:
print("iter >>", i+1, ', loss >>', loss.item(), ', accuracy >>', acc)
torch.save(model.state_dict(), 'Res101.pt')
# test
def test(target_layer_name):
model = Res101().to(device)
model.eval()
model.load_state_dict(torch.load('Res101.pt', map_location=torch.device(device)))
xs, ts, paths = data_load('Test/')
target_layer = None
for name, module in model.named_modules():
if target_layer_name == name:
print('target:', name)
target_layer = module
if target_layer is None:
for name, module in model.named_modules():
print(name)
raise Exception('invalid target layer name >>', target_layer_name)
if type(target_layer) is torch.nn.Sequential:
target_layer = target_layer[-1]
print(target_layer)
fmap_pool = OrderedDict()
grad_pool = OrderedDict()
def forward_hook(key):
def forward_hook_(module, input, output):
# Save featuremaps
fmap_pool[key] = output.detach()
return forward_hook_
def backward_hook(key):
def backward_hook_(module, grad_in, grad_out):
# Save the gradients correspond to the featuremaps
grad_pool[key] = grad_out[0].detach()
return backward_hook_
# If any candidates are not specified, the hook is registered to all the layers.
for name, module in model.named_modules():
module.register_forward_hook(forward_hook(name))
module.register_backward_hook(backward_hook(name))
for i in range(len(paths)):
_x = xs[i]
t = ts[i]
path = paths[i]
x = np.expand_dims(_x, axis=0)
x = torch.tensor(x, dtype=torch.float).to(device)
# forward network
logit = model(x)
pred = F.softmax(logit, dim=1).detach().cpu().numpy()
raw_image = (_x ).transpose(1, 2, 0)
plt.subplot(1, Class_N + 1, 1)
plt.imshow(raw_image)
if t < -1:
plt.title(Class_label[t])
else:
plt.title('?')
plt.axis('off')
for i, class_label in enumerate(Class_label):
# set one-hot class activity
class_index = torch.zeros(pred.shape).to(device)
_index = Class_label.index(class_label)
class_index[:, _index] = 1
logit.backward(gradient=class_index, retain_graph=True)
#target_layer_output = target_layer.forward(x)
fmaps = fmap_pool[target_layer_name]
grads = grad_pool[target_layer_name]
weights = F.adaptive_avg_pool2d(grads, 1)
gcam = torch.mul(fmaps, weights).sum(dim=1, keepdim=True)
gcam = F.relu(gcam)
gcam = F.interpolate(gcam, [img_height, img_width], mode="bilinear", align_corners=False)
B, C, H, W = gcam.shape
gcam = gcam.view(B, -1)
gcam -= gcam.min(dim=1, keepdim=True)[0]
gcam /= gcam.max(dim=1, keepdim=True)[0]
gcam = gcam.view(B, C, H, W)
gcam = gcam.cpu().numpy()[0, 0]
cmap = cm.jet_r(gcam)[..., :3]
gcam = (cmap.astype(np.float) + raw_image.astype(np.float)) / 2
plt.subplot(1, Class_N + 1, i + 2)
plt.imshow(gcam)
plt.title('{}:{:.2f}'.format(class_label, pred[0, i]), fontsize=10)
plt.axis('off')
plt.show()
print("in {}, predicted probabilities >> {}".format(path, pred))
def arg_parse():
parser = argparse.ArgumentParser(description='CNN implemented with Keras')
parser.add_argument('--train', dest='train', action='store_true')
parser.add_argument('--test', dest='test', action='store_true')
parser.add_argument('--target', dest='target_layer', default='conv3', type=str)
args = parser.parse_args()
return args
# main
if __name__ == '__main__':
args = arg_parse()
if args.train:
train()
if args.test:
test(args.target_layer)
if not (args.train or args.test):
print("please select train or test flag")
print("train: python main.py --train")
print("test: python main.py --test")
print("both: python main.py --train --test")
Apparently the left eye is Nino ...
If you look it up with Nino, you can certainly see the results that react to the eyes.
I ran out of power on the way and did it roughly, but ...
Nino?
I believe it's may
Recommended Posts