Aggregate VIP values of Smash Bros. with Pandas

Introduction

[Scraping for the first time] I tried to make a VIP character for Smash Bros. [Beautiful Soup] [Data analysis]

Scraping

import re
import time

import requests
from bs4 import BeautifulSoup

headers = {
    "User-Agent": "Mozilla/5.0 (Windows NT 10.0; WOW64; Trident/7.0; rv:11.0) like Gecko"
}

result = []

for i in range(1, 82):

    url = f"https://kumamate.net/data/?mode=rate&fighter={i}"

    r = requests.get(url, headers=headers)
    r.raise_for_status()

    soup = BeautifulSoup(r.content, "html.parser")

    for trs in soup.find_all("tr", class_=re.compile("RecentMatch[12]")):

        tds = trs.find_all("td")

        win, lose, _ = re.split("[Win or lose]", tds[3].get_text(strip=True))

        data = [
            tds[0].img.get("alt"),
            tds[2].get_text(strip=True),
            int(win),
            int(lose),
            float(tds[4].get_text(strip=True).rstrip("%")),
        ]

        result.append(data)

    time.sleep(1)

result

Data analysis

import pandas as pd

df = pd.DataFrame(result, columns=["myself", "Opponent", "Win", "Loss", "Win率"])

#Number of uses calculation
df["Number of uses"] = df["Win"] + df["Loss"]

#Total number of uses by fighter
pv = df.pivot_table(values="Number of uses", index="myself", aggfunc="sum").reset_index()

pv.rename(columns={"myself": "Opponent", "Number of uses": "Registration number"}, inplace=True)

df1 = pd.merge(df, pv, on="Opponent")

#VIP calculation
df1["VIP"] = df1["Registration number"] * df1["Win rate"]

#Exclude the same character
df2 = df1[df1["myself"] != df1["Opponent"]].copy()

#VIP aggregation by fighter
pv1 = df2.pivot_table(values="VIP", index="myself", aggfunc="sum").sort_values(
    by="VIP", ascending=False
)

pv1["VIP"] = (pv1["VIP"] // 100000).astype(int)

print(pv1.to_markdown())

Total number of uses

myself Number of uses
1 Ganondorf 24004
2 Joker 19527
3 Bowser 19016
4 Mario 17186
5 Donkey Kong 15838
6 Lucina 15771
7 Pudding 13148
8 Lucas 12628
9 Cloud 12264
10 Roy 11374
11 Zelda 11125
12 Captain Falcon 11044
13 Beleth / Beleth 10269
14 Palutena 10159
15 Mars 10126
16 Kirby 9388
17 Link 9173
18 Incineroar 8657
19 Falco 8223
20 Ness 8061
21 robot 8032
22 Ink ring 7986
23 Terry 7955
24 Wolf 7867
25 Pikachu 7739
26 snake 7330
27 Yoshi 7275
28 Greninja 6898
29 Ike 6333
30 Mr.game&watch 6333
31 Meen Meen 6290
32 Bayonetta 6286
33 Dedede 6201
34 Fox 6198
35 Ken 6088
36 Brave 6077
37 Mewtwo 6037
38 Rufure 5917
39 King Kruul 5893
40 Zero Suit Samus 5454
41 Kamui 5453
42 Ridley 5446
43 Pac-Man 5262
44 Pokemon trainer 5093
45 Pakkun Flower 5019
46 Samus 4854
47 Black pit 4733
48 Dark samus 4716
49 Wii Fit trainer 4693
50 chromium 4630
51 Dr. Mario 4405
52 Murabito 4261
53 Shulk 4201
54 Meta Knight 4173
55 seek 4127
56 Luigi 4103
57 Bowser.Jr 3974
58 Pichu 3886
59 banjo&Kazooie 3867
60 Little mac 3818
61 Children's link 3653
62 Duck hunt 3282
63 Isabelle 3208
64 Lucario 3167
65 Rockman 3073
66 Toon link 2954
67 Sonic 2848
68 Wario 2506
69 Pikmin&Olimar 2340
70 Ice climber 2324
71 pit 2265
72 Fighting Mii 2262
73 Peach 2251
74 Rosetta&Chico 2192
75 Shooting Mii 2169
76 Ryu 2151
77 Daisy 1880
78 Diddy Kong 1829
79 Simon 1554
80 Richter 1515
81 Swordsman Mii 1383

VIP tabulation

myself VIP
Bowser.Jr 303
banjo&Kazooie 300
Richter 299
Meen Meen 296
Shooting Mii 295
Duck hunt 291
Fox 287
Rufure 285
Fighting Mii 284
Rockman 284
Incineroar 283
Mr.game&watch 282
Ken 281
Dedede 278
Swordsman Mii 277
Greninja 276
Dark samus 276
Bayonetta 275
snake 274
Toon link 274
Black pit 274
Simon 273
Falco 273
Pakkun Flower 273
Diddy Kong 273
Wii Fit trainer 272
Meta Knight 272
Peach 272
Samus 268
Zelda 268
Ike 268
Pikmin&Olimar 267
pit 267
robot 266
Ryu 266
Pac-Man 266
Ice climber 266
Rosetta&Chico 265
Palutena 265
Murabito 265
Brave 264
Dr. Mario 264
Pokemon trainer 264
Daisy 262
Link 261
Pichu 260
Mario 260
chromium 260
Kamui 259
Yoshi 259
King Kruul 258
Wolf 258
Little mac 258
Lucario 258
Wario 257
Shulk 257
Ink ring 257
Cloud 257
Roy 256
Children's link 256
Pikachu 256
Bowser 256
Mewtwo 256
Luigi 255
Terry 255
Sonic 255
Ness 254
seek 254
Isabelle 253
Lucas 252
Captain Falcon 250
Pudding 250
Donkey Kong 249
Mars 249
Lucina 248
Zero Suit Samus 246
Ridley 245
Joker 244
Kirby 244
Beleth / Beleth 241
Ganondorf 240

reference

[First scraping] I tried to make a VIP character for Smash Bros. [Beautiful Soup] [Data analysis]

Recommended Posts

Aggregate VIP values of Smash Bros. with Pandas
Find the sum of unique values with pandas crosstab
Import of japandas with pandas 1.0 and above
Replace column names / values with pandas dataframe
Real-time calculation of mean values with coroutines
Example of efficient data processing with PANDAS
Try to aggregate doujin music data with pandas
Automatic operation of Chrome with Python + Selenium + pandas
Delete rows with arbitrary values in pandas DataFrame
Handle integer types with missing values in Pandas
How to extract null values and non-null values with pandas
How to output CSV of multi-line header with pandas
[Memo] Load csv of s3 into pandas with boto3
Animate the alpha and beta values of the world's top market cap stocks with pandas + matplotlib