PRML Chapter 2 Probability Distribution Nonparametric Method

We will implement pattern recognition and machine learning, and from Chapter 2, "2.5.2 Nonparametric Method".

A method to grasp the probability distribution by counting the number of fetched data is introduced. I felt that this chapter couldn't be helped even if it took a lot of time, so I implemented it quickly. I didn't scratch the kernel density method either, and used the scipy package to cheat.

Histogram code

import numpy as np
import matplotlib.pyplot as plt
from pylab import *
from scipy import stats
from scipy.stats.kde import gaussian_kde
import random

def mix_G(x):
    return (0.4 * G1 + 0.6 * G2)

def mix_G_distribution(n):
  ratio = 0.3
  if random.random() <ratio:
    return random.gauss(M1, S1)
  else:
    return random.gauss(M2, S2)

if __name__ == "__main__":
    x = np.linspace(0, 1, 100)

    # Set normal distribution1 
    M1 = 0.3
    S1 = 0.15
    G1 = stats.norm.pdf(x, M1, S1)

    # Set normal distribution1 
    M2 = 0.75
    S2 = 0.1
    G2 = stats.norm.pdf(x, M2, S2)

    N = 50
    Data = [mix_G_distribution(n) for n in range(N)]


    plt.subplot(3, 1, 1)
    plt.hist(Data, bins=1/0.04, normed=True)
    plt.plot(x, mix_G(x), "g-")
    plt.xlim(0, 1)
    plt.ylim(0, 3)
    title("Figure 2.24")

    plt.subplot(3, 1, 2)
    plt.hist(Data, bins=1/0.08, normed=True)
    plt.plot(x, mix_G(x), "g-")
    plt.xlim(0, 1)
    plt.ylim(0, 3)

    plt.subplot(3, 1, 3)
    plt.hist(Data, bins=1/0.25, normed=True)
    plt.plot(x, mix_G(x), "g-")
    plt.xlim(0, 1)
    plt.ylim(0, 3)

result

Screen Shot 2015-09-18 at 10.17.14.png

Kernel density method / code

if __name__ == "__main__":
    #Karnel density estimation
    from scipy.stats.kde import gaussian_kde

    plt.subplot(3, 1, 1)
    plt.plot(x, gaussian_kde(Data, 0.005)(x))
    plt.plot(x, mix_G(x), "g-")
    plt.xlim(0, 1)
    plt.ylim(0, 3)
    title("Figure 2.25")

    plt.subplot(3, 1, 2)
    plt.plot(x, gaussian_kde(Data, 0.07)(x))
    plt.plot(x, mix_G(x), "g-")
    plt.xlim(0, 1)
    plt.ylim(0, 3)

    plt.subplot(3, 1, 3)
    plt.plot(x, gaussian_kde(Data, 0.2)(x))
    plt.plot(x, mix_G(x), "g-")
    plt.xlim(0, 1)
    plt.ylim(0, 3)

result

Screen Shot 2015-09-18 at 10.19.07.png

K-nearest neighbor method / code

#k_Neighbourhood
def k_NN(test, train, k):
    train = np.array(train)
    train.sort()
    r = []
    for i in test:
        distance = abs(train - i)
        distance.sort()
        r.append(distance[(k-1)])
    r = np.array(r)
    return k / (2* r * N)



if __name__ == "__main__":
    title("Figure 2.26")
    plt.subplot(3, 1, 1)
    plt.plot(x, k_NN(x, Data, 1))
    plt.plot(x, mix_G(x), "g-")
    plt.xlim(0, 1)
    plt.ylim(0, 3)

    plt.subplot(3, 1, 2)
    plt.plot(x, k_NN(x, Data, 10))
    plt.plot(x, mix_G(x), "g-")
    plt.xlim(0, 1)
    plt.ylim(0, 3)

    plt.subplot(3, 1, 3)
    plt.plot(x, k_NN(x, Data, 30))
    plt.plot(x, mix_G(x), "g-")
    plt.xlim(0, 1)
    plt.ylim(0, 3)

result

Screen Shot 2015-09-18 at 10.21.29.png

Recommended Posts

PRML Chapter 2 Probability Distribution Nonparametric Method
PRML Chapter 9 Mixed Gaussian Distribution Python Implementation
PRML Chapter 10 Variational Gaussian Distribution Python Implementation
PRML Chapter 2 Student's t Distribution Python Implementation
Hypothesis test and probability distribution
[Basics of Modern Mathematical Statistics with python] Chapter 3: Typical Probability Distribution