If you ride the Titanic ... die.

What was made

zwmew-57a83.gif

What are you doing

  1. Create a model
  2. Deploy the model to GCP
  3. Prediction on GCP

GoogleColab I made it a notebook, so if

https://colab.research.google.com/drive/1s6_o-nvMmHhAeBAOoRDgE0UNU6Fe3XrC

procedure

It has almost the same contents as notebook. If you are having trouble opening Colab, please see here.


GCP account registration

[Explanation with image] Register an account with a free trial of Google Cloud Platform (GCP)


Install Google Cloud SDK

Install Google Cloud SDK ~ Initialize


SDK certification

Authenticate with your Google account to mess with GCP using the gcloud command.

$ gcloud auth login

Project creation

ID is prohibited from fogging.

$ PROJECT_ID=anata-no-pj-id
$ PROJECT_NAME=anata-no-pj-name

$ gcloud projects create $PROJECT_ID \
--name $PROJECT_NAME

Billing account settings

If you do not set it, a 403 error will occur when accessing the bucket.

If the following pop-up does not appear, you can skip it because the billing account has already been set.


Activate the project

Set to the target project of command operation.

$ gcloud config set project $PROJECT_ID

Verification

! gcloud config list

# [component_manager]
# disable_update_check = True
# [compute]
# gce_metadata_read_timeout_sec = 0
# [core]
# account = [email protected]
# project = anata-no-pj-id
# 
# Your active configuration is: [default]

If it is OK


Set region, zone, interpreter

REGION=us-central1
ZONE=us-central1-a

$ gcloud config set compute/region $REGION
$ gcloud config set compute/zone $ZONE
$ gcloud config set ml_engine/local_python $(which python3)

The regions where AI Platform online prediction can be used are as follows:

The interpreter is specified to use python3 system for local training.


Verification

$ gcloud config list

# [component_manager]
# disable_update_check = True
# [compute]
# gce_metadata_read_timeout_sec = 0
# region = us-central1
# zone = us-central1-a
# [core]
# account = [email protected]
# project = anata-no-pj-id
# [ml_engine]
# local_python = /usr/bin/python3
# 
# Your active configuration is: [default]

If it is OK


Clone a set of training code

https://github.com/komiyakomiyakomiya/titanic_prediction_on_gcp

$ git clone https://github.com/komiyakomiyakomiya/titanic_prediction_on_gcp.git

Create a directory to save the model

notebook


import os

os.makedirs('./titanic_prediction_on_gcp/working/models/', exist_ok=True)

Training & save model locally

The trained model is saved as ./titanic_prediction_on_gcp/working/models/model.pkl.

$ gcloud ai-platform local train \
--package-path titanic_prediction_on_gcp/working/ \
--module-name working.predict_xgb

Creating a bucket

Create a bucket in GCS to upload the saved model.

BUCKET_NAME=anata-no-bkt-name

$ gsutil mb -l $REGION gs://$BUCKET_NAME

Verification

$ gsutil ls -la

# gs://anata-no-bkt-name/

Upload the saved model to GCS

$ gsutil cp ./titanic_prediction_on_gcp/working/models/model.pkl gs://$BUCKET_NAME/models/model.pkl

Verification

$ gsutil ls gs://$BUCKET_NAME/models/

# gs://anata-no-bkt-name/models/model.pkl

Enable API

Enable the following two to use the AI-Platform API.

$ gcloud services enable ml.googleapis.com
$ gcloud services enable compute.googleapis.com

Verification

$ gcloud services list --enabled

# NAME                              TITLE
# bigquery.googleapis.com           BigQuery API
# bigquerystorage.googleapis.com    BigQuery Storage API
# cloudapis.googleapis.com          Google Cloud APIs
# clouddebugger.googleapis.com      Stackdriver Debugger API
# cloudtrace.googleapis.com         Stackdriver Trace API
# compute.googleapis.com            Compute Engine API
# datastore.googleapis.com          Cloud Datastore API
# logging.googleapis.com            Stackdriver Logging API
# ml.googleapis.com                 AI Platform Training & Prediction API
# monitoring.googleapis.com         Stackdriver Monitoring API
# oslogin.googleapis.com            Cloud OS Login API
# servicemanagement.googleapis.com  Service Management API
# serviceusage.googleapis.com       Service Usage API
# sql-component.googleapis.com      Cloud SQL
# storage-api.googleapis.com        Google Cloud Storage JSON API
# storage-component.googleapis.com  Cloud Storage

OK if there is


Creating model / version resources

Create a model resource and a version resource, and associate it with the uploaded model.pkl.

Model resource

MODEL_NAME=model_xgb
MODEL_VERSION=v1

$ gcloud ai-platform models create $MODEL_NAME \
--regions $REGION

Version resource

! gcloud ai-platform versions create $MODEL_VERSION \
--model $MODEL_NAME \
--origin gs://$BUCKET_NAME/models/ \
--runtime-version 1.14 \
--framework xgboost \
--python-version 3.5

Confirmation of input data

Let's make a prediction using the data prepared in advance. First, check the contents.

! cat titanic_prediction_on_gcp/input/titanic/predict.json

# [36.0, 0] <-36 years old,male

In the format [Age, Gender], the gender is male: 0, female: 1.


Predicted by AI-Platform

! gcloud ai-platform predict \
--model model_xgb \
--version $MODEL_VERSION \
--json-instances titanic_prediction_on_gcp/input/titanic/predict.json

[0.44441232085227966] It is OK if such a predicted value is returned.


Creating a service account

Next, access AI-Platform from python and get the prediction. You will need a service account key, so first create a service account.

SA_NAME=anata-no-sa-name
SA_DISPLAY_NAME=anata-no-sa-display-name

$ gcloud iam service-accounts create $SA_NAME \
--display-name $SA_DISPLAY_NAME \

Grant permissions to service accounts

$ gcloud projects add-iam-policy-binding $PROJECT_ID \
--member serviceAccount:[email protected] \
--role roles/iam.serviceAccountKeyAdmin

$ gcloud projects add-iam-policy-binding $PROJECT_ID \
--member serviceAccount:[email protected] \
--role roles/ml.admin

Service account key generation

$ gcloud iam service-accounts keys create titanic_prediction_on_gcp/service_account_keys/key.json \
--iam-account [email protected]

Read the path of key.json as an environment variable

Generate .env file and describe environment variables and paths

$ echo GOOGLE_APPLICATION_CREDENTIALS=/content/titanic_prediction_on_gcp/service_account_keys/key.json > /content/titanic_prediction_on_gcp/.env

Verification

$ cat ./titanic_prediction_on_gcp/.env

# GOOGLE_APPLICATION_CREDENTIALS=/content/titanic_prediction_on_gcp/service_account_keys/key.json

## Install python-dotenv I'm not in Colab
$ pip install python-dotenv

Define a function to get the prediction

notebook


import googleapiclient.discovery
from dotenv import load_dotenv

#Environment variable settings
load_dotenv('/content/titanic_prediction_on_gcp/.env')


def main(input_data):
    input_data = [input_data]

    PROJECT_ID = 'anata-no-pj-id'
    VERSION_NAME = 'v1'
    MODEL_NAME = 'model_xgb'

    service = googleapiclient.discovery.build('ml', 'v1')
    name = 'projects/{}/models/{}'.format(PROJECT_ID, MODEL_NAME)
    name += '/versions/{}'.format(VERSION_NAME)

    response = service.projects().predict(
        name=name,
        body={'instances': input_data}
    ).execute()

    if 'error' in response:
        print(response['error'])
    else:
        pred = response['predictions'][0]

    return pred

Create a drop-down menu for age and gender

notebook


import ipywidgets as widgets
from ipywidgets import HBox, VBox


age = [i for i in range(101)]
sex = ['male', 'Female']

dropdown_age = widgets.Dropdown(options=age, description='age: ')
dropdown_sex = widgets.Dropdown(options=sex, description='sex: ')
variables = VBox(children=[dropdown_age, dropdown_sex])

VBox(children=[variables])

Forecast

notebook


import numpy as np
from IPython.display import Image
from IPython.display import display_png


input_age = float(dropdown_age.value)
input_sex = 0 if dropdown_sex.value == 'male' else 1
test_input = [input_age, input_sex]

pred = main(test_input)
# print(pred)
pred_binary = np.where(pred > 0.5, 1, 0)
# print(pred_binary)

print('\n When you ride a Titanic...')

if pred_binary == 1:
    display_png(Image('/content/titanic_prediction_on_gcp/images/alive.png'))
else:
    display_png(Image('/content/titanic_prediction_on_gcp/images/dead.png'))

Official reference

https://cloud.google.com/sdk/gcloud/reference/

https://cloud.google.com/sdk/gcloud/reference/ai-platform/

https://cloud.google.com/storage/docs/gsutil

Summary

Thank you for reading to the end. As a 36-year-old uncle, I'm about to die, so I'll be very careful when riding the Titanic.

Recommended Posts

If you ride the Titanic ... die.
If __name__ == Raise your hand, if you write the code under'__main__'
If you want your colleagues to use the same language
If you cd, ls. Shiroyo ……
Checking if you are Sudoku
If you say TemplateDoesNotExist at
Can you delete the file?
If you remove the list to be looped, you will get terrible.
If you give a list with the default argument of the function ...
What to do if you can't use the trash in Lubuntu 18.04.
How to find if you don't know the Java installation directory