Mode-Matching Method Simulation_Python

Mode matching method

What is the mode matching method?

The mode matching method is a method that aims to match the mode of the desired sound field synthesized at a specific control point. Since it is a numerical solution, there are no restrictions on the placement of speakers, but it can be numerically unstable. In this article, I would like to write a simulation when the speaker arrangement is made spherical by the mode matching method. Higher-order Ambisonics simulation The sound field is reproduced by minimizing the squared error of the expansion coefficient described in the article.

The functions used in the mode matching method are as follows. In addition, the function of green_function is described in the above article of Higher Ambisonics.

function.py


import scipy as sp
from scipy.special import sph_harm
import numpy as np
from scipy.special import spherical_jn
from scipy.special import spherical_yn
from numpy import arctan2, sqrt
import numexpr as ne



def cart2sph(x,y,z):
    """ x, y, z :  ndarray coordinates
        ceval: backend to use: 
              - eval :  pure Numpy
              - numexpr.evaluate:  Numexpr """
              
    azimuth = ne.evaluate('arctan2(y,x)')
    xy2 = ne.evaluate('x**2 + y**2')
    elevation = ne.evaluate('arctan2(z, sqrt(xy2))')
    r = eval('sqrt(xy2 + z**2)')
    return azimuth, elevation, r

def EquiDistSphere(n):
    golden_angle = np.pi * (3 - np.sqrt(5))
    theta = golden_angle * (np.arange(n)+1)
    z = np.linspace(1 - 1.0 / n, 1.0 / n - 1, n)
    radius = np.sqrt(1 - z * z)
    
    points = np.zeros((n, 3))
    points[:,0] = radius * np.cos(theta)
    points[:,1] = radius * np.sin(theta)
    points[:,2] = z
    return points

def BnMat2(N,k,r):
    B = np.zeros((N+1)**2, dtype = np.complex).reshape((N+1)**2,)
    dx = 0
    for i in range(N+1):
        A = Bn2(i,k,r)
        for j in np.arange(-i,i+1,1):
            B[dx] = A
            dx +=1
    return B

def Bn2(n,k,r):
    kr = k*r
    y = shankel(n,1,kr)
    return y

def shankel(n,k,z):
    if k == 1:
        sha = spherical_jn(n,z) + 1j*spherical_yn(n,z)
    else:
        sha = spherical_jn(n,z) - 1j*spherical_yn(n,z)
    return sha

def calcSH(N,azi,ele):
    y_n = np.array([],dtype = np.complex)
    for n in range(N+1):
        for m in np.arange(-n,n+1,1):
            y_n = np.append(y_n,sph_harm(m,n,azi,ele))
    return y_n

def calcCmn(N,k,r,pos):
    C_N = np.zeros(((N+1)**2,int(len(pos))),dtype = np.complex)
    if len(pos) == 1:
        hn = BnMat2(N,k,r)
        C_N = hn * np.conj(calcSH(N,pos[0,0],pos[0,1])).T
    else:
        hn = BnMat2(N,k,r)
        for i in range(int(len(pos[:,0]))):
            C_N[:,i] = hn * np.conj(calcSH(N,pos[i,0],pos[i,1])).T
            
    return C_N

simulation

In this simulation as well, we will consider using spherical waves.

\frac{e^{ik|r-r_s|}}{4\pi|r-r_s|} = \sum_{n=0}^\infty\sum_{m=-n}^n ik j_n(kr) h_n(kr_s) Y_n^m(\theta,\varphi) Y_n^m(\theta_s,\varphi_s)^*

The sound pressure on the sphere can be expressed as follows. $p\bigl(\theta,\varphi,r,\omega\bigr) = \sum_{n=0}^\infty\sum_{m=-n}^n A_{nm} 4\pi i^n j_n(kr) Y_n^m(\theta,\varphi) $

From these two formulas $A_{nm} = \frac{k h_n(kr_s) Y_n^m(\theta_s,\varphi_s)^* }{4\pi i^{n-1}}$

The expansion coefficient can be obtained. The expansion coefficient of the desired sound field and the expansion coefficient of the reproduced sound field can be written respectively.

A_{nm}^{des} = \frac{k h_n(kr_{s1}) Y_n^m(\theta_{s1},\varphi_{s1})^*}{4\pi i^{n-1}}
A_{nm}^{rep} = \frac{k h_n(kr_{s2}) Y_n^m(\theta_{s2},\varphi_{s2})^*d}{4\pi i^{n-1}}

$ s1 $ and $ s2 $ represent the primary and secondary sound sources. The problem is to find a drive signal that minimizes this squared error.

min {|A_{nm}^{rep} - A_{nm}^{des}|}^2 + \lambda d^H d

If you expand this formula $C = h_n(kr_{s2}) Y_n^m(\theta_{s2},\varphi_{s2})^* $ $b = h_n(kr_{s1}) Y_n^m(\theta_{s1},\varphi_{s1})^* $ $d = \Bigl(C^H C + \lambda I\Bigr)^{-1} + C^H b$

More drive signals can be obtained.

mode_matching_method.py


import green_function as gr
import numpy as np
import scipy as sp
import function as fu
import matplotlib.pyplot as plt
import matplotlib.patches as patches
import matplotlib.cm as cm

pos = np.array([0,0,0])


#Initial conditions
freq = 550
cv = 344
num_sp = 64
lambda_ = 10**-8
r_sp = 1.5

#Graph conditions
Plot_range = 2.5
space = 0.05

#Calculation
omega = 2 * np.pi * freq
k = omega/cv
pos_azi, pos_ele, pos_r = fu.cart2sph(pos[0],pos[1],pos[2])
vec_R = np.array([pos_azi, pos_ele, pos_r])

#Speaker position
sp_xyz = fu.EquiDistSphere(num_sp)
sp_xyz = sp_xyz * r_sp
sp_azi,sp_ele, sp_r = fu.cart2sph(sp_xyz[:,0],sp_xyz[:,1],sp_xyz[:,2])
sp_ele1 = np.pi/2 - sp_ele
sp_sph = np.vstack([np.vstack([sp_azi,sp_ele1]),sp_r]).T

#Optimal order determination
N_q = int(np.floor(np.sqrt(num_sp))-1)

#Primary sound source
ps_xyz = np.array([1.5,1.5,0]) #Place the radius outside the speaker placement
ps_azi,ps_ele, ps_r = fu.cart2sph(ps_xyz[0],ps_xyz[1],ps_xyz[2])
ps_ele1 = np.pi/2 - ps_ele
ps_sph = np.vstack([np.vstack([ps_azi,ps_ele1]),ps_r]).T

#Calculation of mode matching method
C = fu.calcCmn(N_q,k,r_sp,sp_sph);     
b = fu.calcCmn(N_q,k,ps_sph[0,2],ps_sph);     

I = np.identity(num_sp)
CC = np.conj(C.T) @ C
Cb = np.conj(C.T) @ b

d_MM = 	np.linalg.solve(CC + lambda_ * I,Cb)

#Desired sound field(Primary sound source)And seek the reproduction sound field
X = np.arange(-Plot_range,Plot_range+space,space)
Y = np.arange(-Plot_range,Plot_range+space,space)
P_org = np.zeros((X.size,Y.size), dtype = np.complex)
MM = np.zeros((X.size,Y.size), dtype = np.complex)
for j in range(X.size):
    for i in range(Y.size):
        pos_r = np.array([X[j],Y[i],0])
        P_org[i,j] = gr.green2(1,freq,cv,ps_xyz,pos_r)
        for l in range(num_sp):
            G_transfer = gr.green2(1,freq,cv,sp_xyz[l,:],pos_r)
            MM[i,j] += G_transfer *  d_MM[l]

NE = np.zeros((X.size,Y.size), dtype = np.complex)
for i in range(X.size):
    for j in range(Y.size):
        NE[i,j] = 10*np.log10(((np.abs(MM[i,j]-P_org[i,j]))**2)/((np.abs(P_org[i,j]))**2))

#Sweet spot
rad = (N_q*cv)/(2*np.pi*freq)

#Graph
#Desired sound field
sweet_spot = patches.Circle(xy=(0, 0), radius=rad, ec='r',fill=False)
r_sp_ = patches.Circle(xy=(0, 0), radius=r_sp, ec='b',fill=False)
plt.figure()
ax = plt.axes()
im = ax.imshow(np.real(P_org), interpolation='gaussian',cmap=cm.jet,origin='lower', 
               extent=[-Plot_range, Plot_range, -Plot_range, Plot_range],
               vmax=0.1, vmin=-0.1)
ax.grid(False)
ax.add_patch(sweet_spot)
ax.add_patch(r_sp_)
plt.axis('scaled')
ax.set_aspect('equal')
plt.colorbar(im)
plt.savefig('original_sound.pdf',bbox_inches="tight",dpi = 64,
            facecolor = "lightgray", tight_layout = True) 
plt.show()

#Reproduced sound field
sweet_spot = patches.Circle(xy=(0, 0), radius=rad, ec='r',fill=False)
r_sp_ = patches.Circle(xy=(0, 0), radius=r_sp, ec='b',fill=False)
plt.figure()
ax2 = plt.axes()
im2 = ax2.imshow(np.real(MM), interpolation='gaussian',cmap=cm.jet,origin='lower', 
               extent=[-Plot_range, Plot_range, -Plot_range, Plot_range],
               vmax=0.1, vmin=-0.1)
ax2.grid(False)
ax2.add_patch(sweet_spot)
ax2.add_patch(r_sp_)
plt.axis('scaled')
ax2.set_aspect('equal')
plt.colorbar(im2)
plt.savefig('reproduced_sound.pdf',bbox_inches="tight",dpi = 64,
            facecolor = "lightgray", tight_layout = True)
plt.show()

#Normalization error
sweet_spot = patches.Circle(xy=(0, 0), radius=rad, ec='r',fill=False)
r_sp_ = patches.Circle(xy=(0, 0), radius=r_sp, ec='b',fill=False)
plt.figure()
ax3 = plt.axes()
im3 = ax3.imshow(np.real(NE), interpolation='gaussian',cmap=cm.pink_r,origin='lower', 
               extent=[-Plot_range, Plot_range, -Plot_range, Plot_range],
               vmax=0, vmin=-60)
ax3.grid(False)
ax3.add_patch(sweet_spot)
ax3.add_patch(r_sp_)
plt.axis('scaled')
ax3.set_aspect('equal')
plt.colorbar(im3)
plt.savefig('normalization_error.pdf',bbox_inches="tight",dpi = 64,
            facecolor = "lightgray", tight_layout = True)
plt.show()

result

Desired sound field image.png Reproduced sound field image.png Normalization error image.png

Summary

It was a spherical arrangement ver of the mode matching method. I have the code on Github. https://github.com/koseki2580/mode_matching_method

Recommended Posts

Mode-Matching Method Simulation_Python
Manim's method 13
Manim's method 2
Manim's method 17
Manim's method 5
Manim's method 3
Manim's method 11
Manim's method 16
Manim's method 20
Binary method
Manim's method 10
Manim's method 6
Manim's method 21
Manim's method 4
Manim's method 8
Manim's method 14
Manim's method 22
Manim's method 19
Manim's method 12
Special method
Special method