We've made it easier with docker to verify that your data is normally distributed.
bash
python -c "import numpy; print(str(list(numpy.random.normal(size=100)))\
.strip('[]'))" | docker run -i --rm tsutomu7/test_normal > test.htm
firefox test.htm
If you do the above, it will be displayed as below.
bash
docker run -i --rm tsutomu7/test_normal < data.csv > test.htm
firefox test.htm
--Check the number of data (is it large enough) --Histogram display (bell-shaped) --QQ plot display (whether it is lined up on a straight line) --Shapiro-Wilk test
If you use a uniform distribution as shown below, it will not be judged as a normal distribution.
bash
python -c "import numpy; print(str(list(numpy.random.random(size=1000)))\
.strip('[]'))" | docker run -i --rm tsutomu7/test_normal > test.htm
firefox test.htm
that's all
Recommended Posts