Reverse lookup Numpy / Pandas (will be updated at any time)

http://rest-term.com/archives/2999/ http://algorithm.joho.info/programming/python-numpy-sample-code/ There is a good summary in, so it's enough to look at them, but make a note for yourself to fix the memory. (Appropriate English is also written depending on various circumstances)


Numpy

Creating Array

: white_check_mark: Make a one-dimensional array
>>> import numpy as np
>>> x = np.array([1, 2, 3])
>>> x
array([1, 2, 3])
: white_check_mark: Make a two-dimensional array
>>> y = np.array([[1, 2, 3], [4, 5, 6]])
>>> y
array([[1, 2, 3],
       [4, 5, 6]])
: white_check_mark: Confirm the size of an array
>>> y.shape
(2, 3)
: white_check_mark: Create an array by specifying the lower limit, upper limit, skip interval / Make an array with the lower limit, upper limit, skip interval
>>> m = np.arange(0, 30, 2)
>>> m
array([ 0,  2,  4,  6,  8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28])
: white_check_mark: Make an array with the lower limit, upper limit and elements count.
>>> np.linspace(1, 4, 9)
array([ 1.   ,  1.375,  1.75 ,  2.125,  2.5  ,  2.875,  3.25 ,  3.625,  4.   ])
: white_check_mark: Change the shape of array
>>> m = np.arange(0, 30, 2)
>>> m.reshape(3, 5)
array([[ 0,  2,  4,  6,  8],
       [10, 12, 14, 16, 18],
       [20, 22, 24, 26, 28]])
>>> m
array([ 0,  2,  4,  6,  8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28])
: white_check_mark: Change the shape and size of array
>>> m = np.arange(0, 30, 2)
>>> m.resize(3, 3)
>>> m
array([[ 0,  2,  4],
       [ 6,  8, 10],
       [12, 14, 16]])
: white_check_mark: Make a two-dimensional array (all elements are 1) with the shape
>>> np.ones((4, 3))
array([[ 1.,  1.,  1.],
       [ 1.,  1.,  1.],
       [ 1.,  1.,  1.],
       [ 1.,  1.,  1.]])
>>>
>>> np.ones((2, 3), int)
array([[1, 1, 1],
       [1, 1, 1]])
: white_check_mark: Make a two-dimensional array (all elements are 0) with the shape
>>> np.zeros((4, 3))
array([[ 0.,  0.,  0.],
       [ 0.,  0.,  0.],
       [ 0.,  0.,  0.],
       [ 0.,  0.,  0.]])
: white_check_mark: Make a two-dimensional array like an identity matrix with the size.
>>> np.eye(5)
array([[ 1.,  0.,  0.,  0.,  0.],
       [ 0.,  1.,  0.,  0.,  0.],
       [ 0.,  0.,  1.,  0.,  0.],
       [ 0.,  0.,  0.,  1.,  0.],
       [ 0.,  0.,  0.,  0.,  1.]])
: white_check_mark: Get diagonal elements of a two-dimensional array
>>> np.diag([[ 1,  3,  5], [ 7,  9, 11], [13, 15, 17]])
array([ 1,  9, 17])
: white_check_mark: Make an array with repeating
>>> np.array([1, 2, 3] * 3)
array([1, 2, 3, 1, 2, 3, 1, 2, 3])
>>> np.repeat([1, 2, 3], 3)
array([1, 1, 1, 2, 2, 2, 3, 3, 3])
: white_check_mark: Combine two arrays vertically
>>> x = np.array([[1, 2, 3]])
>>> y = np.array([[4, 5, 6], [7, 8, 9]])
>>> np.vstack([x, y])
array([[1, 2, 3],
       [4, 5, 6],
       [7, 8, 9]])
: white_check_mark: Combine two arrays horizontally
>>> x = np.array([[1, 2], [3, 4]])
>>> y = np.array([[5, 6, 7], [8, 9, 0]])
>>> np.hstack([x, y])
array([[1, 2, 5, 6, 7],
       [3, 4, 8, 9, 0]])
: white_check_mark: Make an array using random numbers
>>> np.random.randint(0, 10, (4, 3))
array([[6, 7, 8],
       [5, 4, 9],
       [5, 4, 9],
       [5, 9, 2]])
>>> np.random.randint(0, 10, (4, 3))
array([[5, 7, 5],
       [8, 4, 3],
       [2, 9, 6],
       [7, 9, 5]])

Operating Array

: white_check_mark: Addition of arrays
>>> x = np.array([[1, 2, 3], [4, 5, 6]])
>>> x
array([[1, 2, 3],
       [4, 5, 6]])
>>> y = np.array([[7, 8, 9], [10, 11, 12]])
>>> y
array([[ 7,  8,  9],
       [10, 11, 12]])
>>> x + y
array([[ 8, 10, 12],
       [14, 16, 18]])
>>> x + x + y
array([[ 9, 12, 15],
       [18, 21, 24]])
: white_check_mark: Multiplication of arrays
>>> x * y
array([[ 7, 16, 27],
       [40, 55, 72]])
: white_check_mark: Power of a array
>>> x ** 2
array([[ 1,  4,  9],
       [16, 25, 36]])
>>> x ** 3
array([[  1,   8,  27],
       [ 64, 125, 216]])
: white_check_mark: Treat arrays as matrices and do dot products / Inner product of arrays
>>> x.dot(y)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
ValueError: shapes (2,3) and (2,3) not aligned: 3 (dim 1) != 2 (dim 0)
>>>
>>> z = np.array([[1], [2], [3]])
>>> z
array([[1],
       [2],
       [3]])
>>> x.dot(z)
array([[14],
       [32]])
: white_check_mark: Transpose an array
>>> x
array([[1, 2, 3],
       [4, 5, 6]])
>>> x.T
array([[1, 4],
       [2, 5],
       [3, 6]])
>>> x.T.T
array([[1, 2, 3],
       [4, 5, 6]])
>>>
>>> z
array([[1],
       [2],
       [3]])
>>> z.T
array([[1, 2, 3]])
: white_check_mark: Confirm and change the type of array elements
>>> x
array([[1, 2, 3],
       [4, 5, 6]])
>>>
>>> x.dtype
dtype('int64')
>>>
>>> x.astype('f')
array([[ 1.,  2.,  3.],
       [ 4.,  5.,  6.]], dtype=float32)
: white_check_mark: Calculate maximum, minimum, summation, average and standard deviation value of array elements
>>> x
array([[1, 2, 3],
       [4, 5, 6]])
>>> x.max()
6
>>> np.max(x)
6
>>> x.min()
1
>>> np.min(x)
1
>>> x.sum()
21
>>> np.sum(x)
21
>>> x.mean()
3.5
>>> np.mean(x)
3.5
>>> np.average(x)
3.5
>>> x.std()
1.707825127659933
>>> np.std(x)
1.707825127659933
: white_check_mark: Get the index of maximum and minimum value in an array.
>>> x
array([[1, 2, 3],
       [4, 5, 6]])
>>> x.argmax()
5
>>> x.argmin()
0
>>>
>>> y = np.array([[1, 2, 3], [1, 2, 3]])
>>> y
array([[1, 2, 3],
       [1, 2, 3]])
>>> y.argmax()
2
>>> y.argmin()
0

Indexing and Slicing of Arrays

: white_check_mark: Extract elements from an array by index: Extract elements from an array by index
>>> s = np.arange(13) ** 2
>>> s
array([  0,   1,   4,   9,  16,  25,  36,  49,  64,  81, 100, 121, 144])
>>> s[0]
0
>>> s[11]
121
>>> s[0:3]
array([0, 1, 4])
>>> s[0], s[11], s[0:3]
(0, 121, array([0, 1, 4]))
>>> s[-4:]
array([ 81, 100, 121, 144])
>>> s[-4:-1]
array([ 81, 100, 121])
>>> s[-4::-1]
array([81, 64, 49, 36, 25, 16,  9,  4,  1,  0])
: white_check_mark: Extract elements from a two-dimensional array by index by specifying an index
>>> r = np.arange(36)
>>> r.resize((6, 6))
>>> r
array([[ 0,  1,  2,  3,  4,  5],
       [ 6,  7,  8,  9, 10, 11],
       [12, 13, 14, 15, 16, 17],
       [18, 19, 20, 21, 22, 23],
       [24, 25, 26, 27, 28, 29],
       [30, 31, 32, 33, 34, 35]])
>>>
>>> r[2, 2]
14
>>> r[3, 3:6]
array([21, 22, 23])
>>> r[3, 3:7]
array([21, 22, 23])
>>> r[:2, :-1]
array([[ 0,  1,  2,  3,  4],
       [ 6,  7,  8,  9, 10]])
>>> r[:-1, ::2]
array([[ 0,  2,  4],
       [ 6,  8, 10],
       [12, 14, 16],
       [18, 20, 22],
       [24, 26, 28]])
: white_check_mark: Extract and edit elements in a two-dimensional array by condition
>>> r[r > 30]
array([31, 32, 33, 34, 35])
>>> r[r > 20]
array([21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35])
>>> r[r > 20] = 20
>>> r
array([[ 0,  1,  2,  3,  4,  5],
       [ 6,  7,  8,  9, 10, 11],
       [12, 13, 14, 15, 16, 17],
       [18, 19, 20, 20, 20, 20],
       [20, 20, 20, 20, 20, 20],
       [20, 20, 20, 20, 20, 20]])

Reference and copy of an array

: white_check_mark: Reference of an array
>>> r = np.arange(36)
>>> r.resize((6, 6))
>>> r
array([[ 0,  1,  2,  3,  4,  5],
       [ 6,  7,  8,  9, 10, 11],
       [12, 13, 14, 15, 16, 17],
       [18, 19, 20, 21, 22, 23],
       [24, 25, 26, 27, 28, 29],
       [30, 31, 32, 33, 34, 35]])
>>> 
>>> r2 = r[2:4, 2:4]
>>> r2
array([[14, 15],
       [20, 21]])
>>> 
>>> r2[:] = -1
>>> r2
array([[-1, -1],
       [-1, -1]])
>>> r
array([[ 0,  1,  2,  3,  4,  5],
       [ 6,  7,  8,  9, 10, 11],
       [12, 13, -1, -1, 16, 17],
       [18, 19, -1, -1, 22, 23],
       [24, 25, 26, 27, 28, 29],
       [30, 31, 32, 33, 34, 35]])
: white_check_mark: Copy of an array
>>> r = np.arange(36)
>>> r.resize((6, 6))
>>> r
array([[ 0,  1,  2,  3,  4,  5],
       [ 6,  7,  8,  9, 10, 11],
       [12, 13, 14, 15, 16, 17],
       [18, 19, 20, 21, 22, 23],
       [24, 25, 26, 27, 28, 29],
       [30, 31, 32, 33, 34, 35]])
>>> 
>>> r2 = r[2:4, 2:4].copy()
>>> r2
array([[14, 15],
       [20, 21]])
>>> 
>>> r2[:] = -1
>>> r2
array([[-1, -1],
       [-1, -1]])
>>> r
array([[ 0,  1,  2,  3,  4,  5],
       [ 6,  7,  8,  9, 10, 11],
       [12, 13, 14, 15, 16, 17],
       [18, 19, 20, 21, 22, 23],
       [24, 25, 26, 27, 28, 29],
       [30, 31, 32, 33, 34, 35]])

Iterate over Arrays

: white_check_mark: Iterate an array
>>> r = np.random.randint(0, 10, (4, 3))
>>> r
array([[1, 6, 3],
       [3, 6, 0],
       [4, 9, 3],
       [5, 9, 3]])
>>>
>>> for row in r:
...     print(row)
... 
[1 6 3]
[3 6 0]
[4 9 3]
[5 9 3]
>>>
>>> for i, row in enumerate(r):
...     print(i, ' : ', row)
... 
0  :  [1 6 3]
1  :  [3 6 0]
2  :  [4 9 3]
3  :  [5 9 3]
: white_check_mark: Iterate multiple arrays in same time
>>> r
array([[1, 6, 3],
       [3, 6, 0],
       [4, 9, 3],
       [5, 9, 3]])
>>> r2 = r ** 2
>>> r2
array([[ 1, 36,  9],
       [ 9, 36,  0],
       [16, 81,  9],
       [25, 81,  9]])
>>> for x, y, z in zip(r, r2, r):
...     print(x, y, z)
... 
[1 6 3] [ 1 36  9] [1 6 3]
[3 6 0] [ 9 36  0] [3 6 0]
[4 9 3] [16 81  9] [4 9 3]
[5 9 3] [25 81  9] [5 9 3]

Pandas

Series

: white_check_mark: Convert a series from ratio scale to ordinal scale to convert a series of scalar values to a series of ordinal category data
>>> s = pd.Series([168, 180, 174, 190, 170, 185, 179, 181, 175, 169, 182, 177, 180, 171])
>>> 
>>> pd.cut(s, 3)
0     (167.978, 175.333]
1     (175.333, 182.667]
2     (167.978, 175.333]
3         (182.667, 190]
4     (167.978, 175.333]
5         (182.667, 190]
6     (175.333, 182.667]
7     (175.333, 182.667]
8     (167.978, 175.333]
9     (167.978, 175.333]
10    (175.333, 182.667]
11    (175.333, 182.667]
12    (175.333, 182.667]
13    (167.978, 175.333]
dtype: category
Categories (3, object): [(167.978, 175.333] < (175.333, 182.667] < (182.667, 190]]
>>> 
>>> pd.cut(s, 3, labels=['Small', 'Medium', 'Large'])
0      Small
1     Medium
2      Small
3      Large
4      Small
5      Large
6     Medium
7     Medium
8      Small
9      Small
10    Medium
11    Medium
12    Medium
13     Small
dtype: category
Categories (3, object): [Small < Medium < Large]

Dataframe

Filtering / Filtering

All-time Olympic Games medal table is used as sample data.

: white_check_mark: Get a row label which column value is maximum
>>> df[df['Gold'] == max(df['Gold'])].index[0]
'United States'
: white_check_mark: Filter a dataframe with multiple conditions
>>> df[(df['Gold'] > 0) & (df['Gold.1'] > 0)]

Merge / Merging

The following is used as sample data. / Sample data is as follow:

>>> import pandas as pd
>>> staff_df = pd.DataFrame([{'Name': 'Kelly', 'Role': 'Director of HR'},
...                          {'Name': 'Sally', 'Role': 'Course liasion'},
...                          {'Name': 'James', 'Role': 'Grader'}])
>>> staff_df = staff_df.set_index('Name')
>>> student_df = pd.DataFrame([{'Name': 'James', 'School': 'Business'},
...                            {'Name': 'Mike', 'School': 'Law'},
...                            {'Name': 'Sally', 'School': 'Engineering'}])
>>> student_df = student_df.set_index('Name')
>>> 
>>> staff_df
                 Role
Name                 
Kelly  Director of HR
Sally  Course liasion
James          Grader
>>> 
>>> student_df
            School
Name              
James     Business
Mike           Law
Sally  Engineering
: white_check_mark: Outer merging

Get data of who is student or staff

>>> pd.merge(staff_df, student_df, how='outer', left_index=True, right_index=True)
                 Role       School
Name                              
James          Grader     Business
Kelly  Director of HR          NaN
Mike              NaN          Law
Sally  Course liasion  Engineering
: white_check_mark: Inner merging

Get data of who is student and staff

>>> pd.merge(staff_df, student_df, how='inner', left_index=True, right_index=True)
                 Role       School
Name                              
James          Grader     Business
Sally  Course liasion  Engineering
: white_check_mark: Left outer join / Left merging

Get staff data. If the staff is also a student, get School data as well. / Get data of who is staff. If the staff is also student, get the data of school.

>>> pd.merge(staff_df, student_df, how='left', left_index=True, right_index=True)
                 Role       School
Name                              
Kelly  Director of HR          NaN
Sally  Course liasion  Engineering
James          Grader     Business
: white_check_mark: Right outer join / Right merging

Get student data. If the student is also a staff member, get Role data as well. / Get data of who is student. If the student is also staff, get the data of role.

>>> pd.merge(staff_df, student_df, how='right', left_index=True, right_index=True)
                 Role       School
Name                              
James          Grader     Business
Mike              NaN          Law
Sally  Course liasion  Engineering
: white_check_mark: Merge using columns other than indexes / Merging not using index
>>> products = pd.DataFrame([{'Product ID': 4109, 'Price': 5.0, 'Product': 'Suchi Roll'},
...                          {'Product ID': 1412, 'Price': 0.5, 'Product': 'Egg'},
...                          {'Product ID': 8931, 'Price': 1.5, 'Product': 'Bagel'}])
>>> products = products.set_index('Product ID')
>>> products
            Price     Product
Product ID                   
4109          5.0  Suchi Roll
1412          0.5         Egg
8931          1.5       Bagel
>>> invoices = pd.DataFrame([{'Customer': 'Ali', 'Product ID': 4109, 'Quantity': 1},
...                          {'Customer': 'Eric', 'Product ID': 1412, 'Quantity': 12},
...                          {'Customer': 'Anda', 'Product ID': 8931, 'Quantity': 6},
...                          {'Customer': 'Sam', 'Product ID': 4109, 'Quantity': 2}])
>>> invoices
  Customer  Product ID  Quantity
0      Ali        4109         1
1     Eric        1412        12
2     Anda        8931         6
3      Sam        4109         2
>>>
>>> pd.merge(products, invoices, how='right', left_index=True, right_on='Product ID')
   Price     Product Customer  Product ID  Quantity
0    5.0  Suchi Roll      Ali        4109         1
1    0.5         Egg     Eric        1412        12
2    1.5       Bagel     Anda        8931         6
3    5.0  Suchi Roll      Sam        4109         2
: white_check_mark: Merge multiple columns as keys / Merging with multiple keys
>>> staff_df = pd.DataFrame([{'First Name': 'Kelly', 'Last Name': 'Desjardins', 'Role': 'Director of HR'},
...                          {'First Name': 'Sally', 'Last Name': 'Brooks', 'Role': 'Course liasion'},
...                          {'First Name': 'James', 'Last Name': 'Wilde', 'Role': 'Grader'}])
>>> student_df = pd.DataFrame([{'First Name': 'James', 'Last Name': 'Hammond', 'School': 'Business'},
...                            {'First Name': 'Mike', 'Last Name': 'Smith', 'School': 'Law'},
...                            {'First Name': 'Sally', 'Last Name': 'Brooks', 'School': 'Engineering'}])
>>> staff_df
  First Name   Last Name            Role
0      Kelly  Desjardins  Director of HR
1      Sally      Brooks  Course liasion
2      James       Wilde          Grader
>>> student_df
  First Name Last Name       School
0      James   Hammond     Business
1       Mike     Smith          Law
2      Sally    Brooks  Engineering
>>> pd.merge(staff_df, student_df, how='inner', left_on=['First Name','Last Name'], right_on=['First Name','Last Name'])
  First Name Last Name            Role       School
0      Sally    Brooks  Course liasion  Engineering

Aggregation / Grouping

: white_check_mark: Aggregate in column A and get the sum of other columns / Group by column'A' and calculate sum of other columns
>>> df.groupby('A').agg('sum')
>>> df.groupby('A').agg({'B': sum})

Recommended Posts

Reverse lookup Numpy / Pandas (will be updated at any time)
Pandas reverse lookup memo
When will mmap (2) files be updated? (3)
When will mmap (2) files be updated? (2)
When will mmap (2) files be updated? (1)
Python Date / Time Library Reverse Lookup Reference
Call the python debugger at any time