Tâche
Je veux estimer la chose la plus probable générée à partir de plusieurs distributions gaussiennes!
import numpy as np
import math
import matplotlib.pyplot as plt
np.random.seed(0)
def data_generate(n):
return (np.random.randn(n)
+ np.where(np.random.rand(n) > 0.3, 2., -2.))
aa = np.histogram(data_generate(1000), bins =50)
a_bins = aa[1]
a_hist = aa[0]
X1 = []
for i in range(1, len(a_bins)):
X1.append((a_bins[i-1]+a_bins[i])/2)
plt.bar(X1,a_hist, width=0.05)
def nomal_distribution(x , mu, dev):
c = (2 * math.pi * math.pow(dev, 2)) ** (-1/2)
a = (-(x-mu)**2)/(2 * (dev**2) )
return c * math.exp(a)
Maximiser Q of E
def ita(xi, mu, dev, m = m):
s = 0
for i in range(m):
s += w[i] * nomal_distribution(xi, mu[i], dev[i])
n = []
for l in range(m):
n.append(w[l] * nomal_distribution(xi, mu[l], dev[l])/s)
return n #matrice m
def E (x, mu, dev, m = m, data_size = data_size):
Q = 0
for i in range(data_size):
for j in m:
Q += ita(x[i], mu, dev)[j] * ( math.ln(w[j]) + math.ln(nomal_distribution(xi, mu[j], dev[j])) )
return Q
def M(x, mu, dev, d, m = m, data_size = data_size):
n = 0
a = 0
aa = 0
for i in range(data_size):
n += np.array(ita(x[i], mu, dev))
a += (np.array(ita(x[i], mu, dev)) * x[i])
aa += np.array(ita(x[i], mu, dev)) * (( x[i] - mu) ** 2)
w1 = (1/data_size)*n
mu1 = [ a[j]/n[j] for j in range(m) ]
dev1 = [math.sqrt( aa[j]/(d*n[j]) ) for j in range(m)]
return w1, mu1, dev1
def probability_distribution(xi, w1, mu1, dev1):
p = 0
pro = []
for j in range(m):
p += w1[j] * nomal_distribution(xi, mu1[j], dev1[j])
return p
epoc = 30
m = 3
data_size = 1000
mu = np.random.uniform(-1, 1, m)
w = [0.2,0.2,0.6]
dev = np.random.uniform(-0.2, 0.2, m)
x = data_generate(data_size)
w1, mu1, dev1 = M(x, mu, dev, 1)
for num in range(epoc):
w1, mu1, dev1 = M(x, mu1, dev1, 1)
xx = np.linspace(-10, 10, 100)
pp0 = [probability_distribution(xx[i] ,w, mu, dev) for i in range(len(xx))]
pp = [probability_distribution(xx[i] ,w1, mu1, dev1) for i in range(len(xx))]
plt.scatter(xx,pp, c='red')
#plt.scatter(xx,pp0, c = 'blue')
Recommended Posts