python
import cv2
import numpy as np
from IPython.display import display, Image
def display_cv_image(image, format='.png'):
decoded_bytes = cv2.imencode(format, image)[1].tobytes()
display(Image(data=decoded_bytes))
img = cv2.imread("{Chemin du fichier image}")
display_cv_image(img)
#Échelle de gris
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
#Binarisation
ret,th1 = cv2.threshold(gray,200,255,cv2.THRESH_BINARY)
display_cv_image(th1)
contours, hierarchy = cv2.findContours(th1,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
#Trier uniquement ceux qui ont une grande surface
areas = []
for cnt in contours:
area = cv2.contourArea(cnt)
if area > 10000:
epsilon = 0.1*cv2.arcLength(cnt,True)
approx = cv2.approxPolyDP(cnt,epsilon,True)
areas.append(approx)
cv2.drawContours(img,areas,-1,(0,255,0),3)
display_cv_image(img)
img = cv2.imread("{Chemin du fichier image}")
dst = []
pts1 = np.float32(areas[0])
pts2 = np.float32([[600,300],[600,0],[0,0],[0,300]])
M = cv2.getPerspectiveTransform(pts1,pts2)
dst = cv2.warpPerspective(img,M,(600,300))
display_cv_image(dst)
Recommended Posts