J'ai créé un algorithme génétique avec python quand j'en avais besoin. En fait, cela est changé pour une utilisation spéciale dans Spacon, donc ce n'est pas à usage général. .. ..
L'algorithme est le suivant:
comme caractéristique:
Je me demande si le code source est ici. .. .. Je ne le posterai pas car il est difficile à utiliser. Vous pouvez le voir en regardant la routine principale.
Dans le code source précédent, le traitement parallèle utilisant le multitraitement était erroné et n'était pas un traitement parallèle. Dans cette version, le traitement parallèle devrait être possible. .. ..
ga.py
u""" Genetic Algrithm.
"""
import numpy as np
from random import random
import copy
from multiprocessing import Process, Queue
from math import exp,cos,sin,log
large= 1e+10
tiny = 1e-10
init_murate= 0.06
maxid= 0
def test_rosen(var,*args):
import scipy.optimize as opt
return opt.rosen(var)
def test_func(var,*args):
x,y= var
res= x**2 +y**2 +100*exp(-x**2 -y**2)*sin(2.0*(x+y))*cos(2*(x-y)) \
+80*exp(-(x-1)**2 -(y-1)**2)*cos(x+4*y)*sin(2*x-y) \
+200*sin(x+y)*exp(-(x-3)**2-(y-1)**2)
return res
def fitfunc1(val):
return exp(-val)
def fitfunc2(val):
return log(1.0/val +1.0)
def dec_to_bin(dec,nbitlen):
bin= np.zeros(nbitlen,dtype=int)
for i in range(nbitlen):
bin[i]= dec % 2
dec /= 2
return bin
def bin_to_dec(bin,nbitlen):
dec= 0
for i in range(nbitlen):
dec += bin[i]*2**(i)
return dec
def crossover(ind1,ind2):
u"""
Homogeneous crossover of two individuals to create a offspring
which has some similarities to the parents.
"""
ind= copy.deepcopy(ind1)
nbitlen= ind.genes[0].nbitlen
for i in range(len(ind.genes)):
g1= ind1.genes[i]
g2= ind1.genes[i]
for ib in range(nbitlen):
if g1.brep[ib] != g2.brep[ib] and random() < 0.5:
ind.genes[i].brep[ib]= g2.brep[ib]
return ind
def make_pairs(num):
u"""makes random pairs from num elements.
"""
arr= range(num)
pairs=[]
while len(arr) >= 2:
i= int(random()*len(arr))
ival= arr.pop(i)
j= int(random()*len(arr))
jval= arr.pop(j)
pairs.append((ival,jval))
return pairs
class Gene:
u"""Gene made of *nbitlen* bits.
"""
def __init__(self,nbitlen,var,min=-large,max=large):
self.nbitlen= nbitlen
self.brep = np.zeros(nbitlen,dtype=int)
self.set_range(min,max)
self.set_var(var)
def set_range(self,min,max):
self.min= float(min)
self.max= float(max)
def set_var(self,var):
dec= int((var-self.min)/(self.max-self.min) *(2**self.nbitlen-1))
self.brep= dec_to_bin(dec,self.nbitlen)
def get_var(self):
dec= bin_to_dec(self.brep,self.nbitlen)
return self.min +dec*(self.max-self.min)/(2**self.nbitlen-1)
def mutate(self,rate):
for i in range(self.nbitlen):
if random() < rate:
self.brep[i] = (self.brep[i]+1) % 2
class Individual:
u"""Individual made of some genes which should return evaluation value..
"""
def __init__(self,id,ngene,murate,func,*args):
self.id= id
self.ngene= ngene
self.murate= murate
self.func= func
self.args= args
self.value= 0.0
def set_genes(self,genes):
if len(genes) != self.ngene:
print "{:*>20}: len(genes) != ngene !!!".format(' Error')
exit()
self.genes= genes
def calc_func_value(self,q):
u"""
calculates the value of given function.
"""
vars= np.zeros(len(self.genes))
for i in range(len(self.genes)):
vars[i]= self.genes[i].get_var()
val= self.func(vars,self.args)
q.put(val)
#self.value= self.func(vars,self.args)
print ' ID{:05d}: value= {:15.7f}'.format(self.id,val)
def mutate(self):
for gene in self.genes:
gene.mutate(self.murate)
def set_mutation_rate(self,rate):
self.murate= rate
def get_variables(self):
vars= []
for gene in self.genes:
vars.append(gene.get_var())
return vars
class GA:
u""" Genetic Algorithm class.
"""
def __init__(self,nindv,ngene,nbitlen,func,vars,vranges,fitfunc,*args):
u"""Constructor of GA class.
func
function to be evaluated with arguments vars and *args.
fitfunc
function for fitness evaluation with using function value obtained above.
"""
self.nindv= nindv
self.ngene= ngene
self.nbitlen= nbitlen
self.func= func
self.vars= vars
self.vranges= vranges
self.fitfunc= fitfunc
self.args= args
self.create_population()
def keep_best_individual(self):
vals= []
for i in range(len(self.population)):
vals.append(self.population[i].value)
idx= vals.index(min(vals))
self.best_individual= copy.deepcopy(self.population[idx])
def create_population(self):
u"""creates *nindv* individuals around the initial guess."""
global maxid
self.population= []
#.....0th individual is the initial guess if there is
ind= Individual(0,self.ngene,init_murate,self.func,self.args)
genes=[]
for ig in range(self.ngene):
g= Gene(self.nbitlen,self.vars[ig]
,min=self.vranges[ig,0],max=self.vranges[ig,1])
genes.append(g)
ind.set_genes(genes)
self.population.append(ind)
#.....other individuals whose genes are randomly distributed
for i in range(self.nindv-1):
ind= Individual(i+1,self.ngene,init_murate,self.func,self.args)
maxid= i+1
genes= []
for ig in range(self.ngene):
g= Gene(self.nbitlen,self.vars[ig]
,min=self.vranges[ig,0],max=self.vranges[ig,1])
#.....randomize by mutating with high rate
g.mutate(0.25)
genes.append(g)
ind.set_genes(genes)
self.population.append(ind)
def roulette_selection(self):
u"""selects *nindv* individuals according to their fitnesses
by means of roulette.
"""
#.....calc all the probabilities
prob= []
for ind in self.population:
prob.append(self.fitfunc(ind.value))
print prob
self.keep_best_individual()
istore=[]
for i in range(len(self.population)):
istore.append(0)
print istore
for i in range(self.nindv):
ptot= 0.0
for ii in range(len(self.population)):
if istore[ii] == 1: continue
ptot += prob[ii]
prnd= random()*ptot
ptot= 0.0
for ii in range(len(self.population)):
if istore[ii] == 1: continue
ptot= ptot +prob[ii]
#print ii,prnd,ptot
if prnd < ptot:
istore[ii]= 1
break
print istore
while istore.count(0) > 0:
idx= istore.index(0)
del self.population[idx]
del istore[idx]
if len(self.population) != self.nindv:
print "{:*>20}: len(self.population != self.nindv) !!!".format(' Error')
print len(self.population), self.nindv
exit()
def run(self,maxiter=100):
u"""main loop of GA.
"""
global maxid
#.....parallel processes of function evaluations
prcs= []
qs= []
for i in range(self.nindv):
qs.append(Queue())
prcs.append(Process(target=self.population[i].calc_func_value
,args=(qs[i],)))
for p in prcs:
p.start()
for p in prcs:
p.join()
for i in range(self.nindv):
self.population[i].value= qs[i].get()
for it in range(maxiter):
print ' step= {:8d}'.format(it+1)
#.....give birth to some offsprings by crossover
pairs= make_pairs(self.nindv)
for pair in pairs:
new_ind= crossover(self.population[pair[0]],
self.population[pair[1]])
maxid += 1
new_ind.id= maxid
self.population.append(new_ind)
#.....mutation of new born offsprings
for i in range(self.nindv,len(self.population)):
self.population[i].mutate()
#.....evaluate function values of new born offsprings
prcs= []
qs= []
j=0
for i in range(self.nindv,len(self.population)):
qs.append(Queue())
prcs.append(Process(target=self.population[i].calc_func_value,
args=(qs[j],)))
j += 1
for p in prcs:
p.start()
for p in prcs:
p.join()
j=0
for i in range(self.nindv,len(self.population)):
self.population[i].value= qs[j].get()
j += 1
#.....selection
self.roulette_selection()
#.....output the current best if needed
self.out_current_best()
print ' Best record:'
best= self.best_individual
print ' ID= {:05d}'.format(best.id)
print ' value= {:15.7f}'.format(best.value)
print ' variables= ',best.get_variables()
def out_current_best(self):
best= self.best_individual
print ' current best ID{:05d}, '.format(best.id) \
+'value= {:15.7f}'.format(best.value)
f=open('out.current_best','w')
f.write('ID= {:05d}\n'.format(best.id))
f.write('value= {:15.7f}\n'.format(best.value))
f.write('variables:\n')
vars= best.get_variables()
for var in vars:
f.write('{:15.7e}\n'.format(var))
f.close()
if __name__ == '__main__':
vars= np.array([0.1,0.2])
vranges= np.array([[-5.0,5.0],[-5.0,5.0]])
ga= GA(10,2,16,test_func,vars,vranges,fitfunc1)
ga.run(20)
Recommended Posts