[Introduction à Pytorch] J'ai essayé de catégoriser Cifar10 avec VGG16 ♬

Puisque Pytorch est le meilleur pendant un certain temps, j'ai essayé de catégoriser MNIST et Cifar 10 en regardant la référence suivante.

Ce que j'ai fait

・ Installation de Pytorch ・ Essayez de déplacer MNIST ・ Essayez de déplacer Cifar10 ・ Essayez de bouger avec VGG16

・ Installation de Pytorch

Si vous entrez la page de référence suivante en fonction de votre environnement, la commande sera spécifiée automatiquement. 【référence】 ⓪https://pytorch.org/ pytorch_install.jpg Ainsi, dans l'environnement Wan, j'ai pu l'installer avec la commande suivante.

(keras-gpu) C:\Users\user\pytorch>conda install pytorch torchvision cudatoolkit=10.1 -c pytorch

En fait, j'ai eu un petit problème ici. Je l'ai installé dans l'environnement (keras-gpu) car divers outils sont également installés. Ensuite, bien que l'installation ait réussi, les trois événements suivants se sont produits.

    1. environnement Keras supprimé
  1. Certains Libs ont été déclassés
    1. Certains ont été mis à jour En d'autres termes, l'environnement Keras-gpu semble avoir été détruit. Par conséquent, nous vous recommandons fortement de l'installer dans un environnement conda normal. La netteté est que lorsque l'installation est terminée, la sortie standard est effacée et l'affichage passe à terminé.

・ Essayez de déplacer MNIST

Je pense que cela fonctionnera si vous suivez la référence ① ci-dessous, donc je vais l'omettre. 【référence】 ① MNIST avec PyTorch Cependant, une erreur peut se produire lors de la lecture des données. C'est selon la référence suivante ② ** "2. Erreur liée aux paramètres du chargeur de données. BrokenPipeError: [Errno 32] Broken pipe -> Ce cas pourrait être évité en définissant num_workers = 0 en fonction de l'URL de référence②. "** Ainsi, changer le code en num_workers = 0 a éliminé l'erreur.

② [J'ai vérifié le fonctionnement de PyTorch (15)](https://start0x00url.net/2018/11/08/pytorch-%E3%81%AE%E5%8B%95%E4%BD%9C% E7% A2% BA% E8% AA% 8D% E3% 82% 92% E3% 81% 97% E3% 81% A6% E3% 81% BF% E3% 81% 9F% EF% BC% 88% EF% BC% 91% EF% BC% 95% EF% BC% 89 /)

・ Essayez de déplacer Cifar10

Un exemple de code pour Cifar10 est présenté en détail dans les références ci-dessous. Cependant, pour des raisons inconnues, ce code ne fonctionnait pas beaucoup. 【référence】 ③TRAINING A CLASSIFIER Donc, j'ai étendu le code MNIST ci-dessus à Cifar 10 tout en regardant le code en ③. Le résultat est le suivant. Premièrement, les lib, etc. à utiliser sont les suivants

'''
PyTorch Cifar10 sample
'''
import argparse
import time
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
import torchvision
import torchvision.transforms as transforms
from torchvision.datasets import CIFAR10  #MNIST
import torch.optim as optim
from torchsummary import summary
#from Net_cifar10 import Net_cifar10
from Net_vgg16 import VGG16
import matplotlib.pyplot as plt
import numpy as np

Ce qui suit est une fonction de dessin d'image.

# functions to show an image
def imshow(img):
    img = img / 2 + 0.5     # unnormalize
    npimg = img.numpy()
    plt.imshow(np.transpose(npimg, (1, 2, 0)))
    plt.pause(1)

Ce qui suit est une fonction liée aux arguments qui donne la valeur initiale.

def parser():
    '''
    argument
    '''
    parser = argparse.ArgumentParser(description='PyTorch Cifar10')
    parser.add_argument('--epochs', '-e', type=int, default=20,
                        help='number of epochs to train (default: 2)')
    parser.add_argument('--lr', '-l', type=float, default=0.01,
                        help='learning rate (default: 0.01)')
    args = parser.parse_args()
    return args

Voici la fonction main (). La première est la partie lecture des données. Vous pouvez voir que les classes sont différentes entre MNIST et Cifar 10. J'ai aussi appris avec bach_size = 32.

def main():
    '''
    main
    '''
    args = parser()
    transform = transforms.Compose(
    [transforms.ToTensor(),
     transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
    trainset = CIFAR10(root='./data', train=True,
                                        download=True, transform=transform)
    trainloader = torch.utils.data.DataLoader(trainset, batch_size=32,  #batch_size=4
                                          shuffle=True, num_workers=0) #num_workers=2
    testset = CIFAR10(root='./data', train=False,
                                       download=True, transform=transform)
    testloader = torch.utils.data.DataLoader(testset, batch_size=32,   #batch_size=4
                                         shuffle=False, num_workers=0) #num_workers=2
    #classes = tuple(np.linspace(0, 9, 10, dtype=np.uint8))
    classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')

Ensuite, les images et les étiquettes des données d'entraînement sont affichées et imprimées.

    # get some random training images
    dataiter = iter(trainloader)
    images, labels = dataiter.next()
    # show images
    imshow(torchvision.utils.make_grid(images))
    # print labels
    print(' '.join('%5s' % classes[labels[j]] for j in range(4)))

Ce qui suit définit l'appareil en préparation des calculs à l'aide du GPU.

    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") #for gpu
    # Assuming that we are on a CUDA machine, this should print a CUDA device:
    print(device)

Définissez le modèle. Ici, j'ai fait quelques définitions et regardé les changements. summary(model,(3,32,32)) Comme indiqué dans Référence ④, vous pouvez obtenir les mêmes informations que Keras model.summary (). 【référence】 ④ Résumé de Visdom et de la torche pour aider à la construction et à l'évaluation du modèle Pytorch Visdom semble être un outil capable d'afficher des graphiques comme le tensorboard, mais je ne l'ai pas utilisé cette fois.

    # model
    #net = Net_cifar10()
    #net = VGG13()
    net = VGG16()
    model = net.to(device)  #for gpu
    summary(model,(3,32,32))

Le critère et l'optimiseur sont définis ci-dessous. De plus, il semble que les paramètres soient différents entre MNIST et Cifar10.

    # define loss function and optimier
    criterion = nn.CrossEntropyLoss()
    #optimizer = optim.SGD(net.parameters(),lr=args.lr, momentum=0.99, nesterov=True)
    optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)

Vous apprendrez ci-dessous. Je viens de commenter le code du processeur et je l'ai laissé. Au moment de MNIST, la précision a été évaluée pour les données de test à la fin, mais comme Keras, etc., elle est évaluée à chaque fois ou une fois toutes les 200 fois au même moment que la perte d'apprentissage.

    # train
    for epoch in range(args.epochs):
        running_loss = 0.0
        for i, data in enumerate(trainloader, 0):
            # get the inputs; data is a list of [inputs, labels]
            #inputs, labels = data  #for cpu
            inputs, labels = data[0].to(device), data[1].to(device) #for gpu
            # zero the parameter gradients
            optimizer.zero_grad()

            # forward + backward + optimize
            outputs = net(inputs)
            loss = criterion(outputs, labels)
            loss.backward()
            optimizer.step()

            # print statistics
            running_loss += loss.item()
            if i % 200 == 199:    # print every 2000 mini-batches
                # test
                correct = 0
                total = 0
                with torch.no_grad():
                    for (images, labels) in testloader:
                        outputs = net(images.to(device)) #for gpu
                        _, predicted = torch.max(outputs.data, 1)
                        total += labels.size(0)
                        correct += (predicted == labels.to(device)).sum().item()
                #print('Accuracy: {:.2f} %'.format(100 * float(correct/total)))
                
                print('[%d, %5d] loss: %.3f '% (epoch + 1, i + 1, running_loss / 200), 'Accuracy: {:.2f} %'.format(100 * float(correct/total)))
                running_loss = 0.0

Lorsque vous avez terminé l'entraînement, enregistrez le résultat net.state_dict ().

    print('Finished Training')
    PATH = './cifar_net.pth'
    torch.save(net.state_dict(), PATH)

Ci-dessous, la précision du test est à nouveau calculée et sortie.

    # test
    correct = 0
    total = 0
    with torch.no_grad():
        for (images, labels) in testloader:
            outputs = net(images.to(device)) #for gpu
            _, predicted = torch.max(outputs.data, 1)
            total += labels.size(0)
            correct += (predicted == labels.to(device)).sum().item()
    print('Accuracy: {:.2f} %'.format(100 * float(correct/total)))

Ci-dessous, vous verrez les données de test, prédire et afficher les résultats.

    dataiter = iter(testloader)
    images, labels = dataiter.next()
    # print images
    imshow(torchvision.utils.make_grid(images))
    print('GroundTruth: ', ' '.join('%5s' % classes[labels[j]] for j in range(4)))
    
    outputs = net(images.to(device))
    _, predicted = torch.max(outputs, 1)

    print('Predicted: ', ' '.join('%5s' % classes[predicted[j]] for j in range(4)))

Enfin, calculez la précision de la prédiction pour chaque classe.

    class_correct = list(0. for i in range(10))
    class_total = list(0. for i in range(10))
    with torch.no_grad():
        for data in testloader:
            images, labels = data #for cpu
            #inputs, labels = data[0].to(device), data[1].to(device) #for gpu
            outputs = net(images.to(device))
            _, predicted = torch.max(outputs, 1)
            c = (predicted == labels.to(device)).squeeze()
            for i in range(4):
                label = labels[i]
                class_correct[label] += c[i].item()
                class_total[label] += 1

    for i in range(10):
        print('Accuracy of %5s : %2d %%' % (
            classes[i], 100 * class_correct[i] / class_total[i]))

À la fin de main (), le temps nécessaire au calcul s'affiche.

if __name__ == '__main__':
    start_time = time.time()
    main()
    print('elapsed time: {:.3f} [sec]'.format(time.time() - start_time))

Le modèle utilisé sur la page Pytorch est le suivant, et le modèle simple est utilisé.

Net_cifar10.py


import torch.nn as nn
import torch.nn.functional as F

class Net_cifar10(nn.Module):
    def __init__(self):
        super(Net_cifar10, self).__init__()
        self.conv1 = nn.Conv2d(3, 6, 5)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        x = self.pool(F.relu(self.conv1(x)))
        x = self.pool(F.relu(self.conv2(x)))
        x = x.view(-1, 16 * 5 * 5)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x

・ Essayez de bouger avec VGG16

Il existe différents modèles de la famille VGG de Pytorch lorsque vous recherchez sur Google, mais la référence suivante est facile à comprendre. 【référence】 ⑤ Exemples PyTorch 0.4.1 (explication du code): Classification des images - Oxford flower 17 species (VGG) Cependant, seul VGG13 est illustré ici. Donc, en me référant à article précédent de Wan, je l'ai étendu à VGG16 comme suit.

Net_vgg16.py


import torch.nn as nn
import torch.nn.functional as F

class VGG16(nn.Module):
    def __init__(self): # , num_classes):
        super(VGG16, self).__init__()
        num_classes=10

        self.block1_output = nn.Sequential (
            nn.Conv2d(3, 64, kernel_size=3, padding=1),
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True),
            nn.Conv2d(64, 64, kernel_size=3, padding=1),
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=2, stride=2),
        )

        self.block2_output = nn.Sequential (
            nn.Conv2d(64, 128, kernel_size=3, padding=1),
            nn.BatchNorm2d(128),
            nn.ReLU(inplace=True),
            nn.Conv2d(128, 128, kernel_size=3, padding=1),
            nn.BatchNorm2d(128),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=2, stride=2),
        )

        self.block3_output = nn.Sequential (
            nn.Conv2d(128, 256, kernel_size=3, padding=1),
            nn.BatchNorm2d(256),
            nn.ReLU(inplace=True),
            nn.Conv2d(256, 256, kernel_size=3, padding=1),
            nn.BatchNorm2d(256),
            nn.ReLU(inplace=True),
            nn.Conv2d(256, 256, kernel_size=3, padding=1),
            nn.BatchNorm2d(256),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=2, stride=2),
        )

        self.block4_output = nn.Sequential (
            nn.Conv2d(256, 512, kernel_size=3, padding=1),
            nn.BatchNorm2d(512),
            nn.ReLU(inplace=True),
            nn.Conv2d(512, 512, kernel_size=3, padding=1),
            nn.BatchNorm2d(512),
            nn.ReLU(inplace=True),
            nn.Conv2d(512, 512, kernel_size=3, padding=1),
            nn.BatchNorm2d(512),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=2, stride=2),
        )

        self.block5_output = nn.Sequential (
            nn.Conv2d(512, 512, kernel_size=3, padding=1),
            nn.BatchNorm2d(512),
            nn.ReLU(inplace=True),
            nn.Conv2d(512, 512, kernel_size=3, padding=1),
            nn.BatchNorm2d(512),
            nn.ReLU(inplace=True),
            nn.Conv2d(512, 512, kernel_size=3, padding=1),
            nn.BatchNorm2d(512),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=2, stride=2),
        )

        self.classifier = nn.Sequential(
            nn.Linear(512, 512),  #512 * 7 * 7, 4096),
            nn.ReLU(True),
            nn.Dropout(),
            nn.Linear(512, 32 ),  #4096, 4096),
            nn.ReLU(True),
            nn.Dropout(),
            nn.Linear(32, num_classes),  #4096
        )

    def forward(self, x):
        x = self.block1_output(x)
        x = self.block2_output(x)
        x = self.block3_output(x)
        x = self.block4_output(x)
        x = self.block5_output(x)
        #print(x.size())
        x = x.view(x.size(0), -1)
        x = self.classifier(x)
        return x

De plus, des exemples de calcul Cifar 10 pour différents modèles sont affichés.

Résumé

・ J'ai essayé de catégoriser Cifar10 avec Pytorch ・ Au départ, il y avait des erreurs, mais il est devenu possible de calculer de manière stable.

・ Je voudrais déplacer un exemple unique à Pytorch.

prime

(keras-gpu) C:\Users\user\pytorch\cifar10>python pytorch_cifar10_.py
Files already downloaded and verified
Files already downloaded and verified
cuda:0
[1,   200] loss: 2.303  Accuracy: 13.34 %
[1,   400] loss: 2.299  Accuracy: 14.55 %
[1,   600] loss: 2.296  Accuracy: 14.71 %
[1,   800] loss: 2.284  Accuracy: 16.72 %
[1,  1000] loss: 2.248  Accuracy: 17.70 %
[1,  1200] loss: 2.144  Accuracy: 24.59 %
[1,  1400] loss: 2.039  Accuracy: 27.71 %
[2,   200] loss: 1.943  Accuracy: 30.32 %
[2,   400] loss: 1.900  Accuracy: 31.92 %
[2,   600] loss: 1.883  Accuracy: 32.70 %
[2,   800] loss: 1.831  Accuracy: 34.42 %
[2,  1000] loss: 1.802  Accuracy: 34.84 %
[2,  1200] loss: 1.776  Accuracy: 35.06 %
[2,  1400] loss: 1.733  Accuracy: 37.69 %
[3,   200] loss: 1.688  Accuracy: 37.61 %
[3,   400] loss: 1.657  Accuracy: 38.20 %
[3,   600] loss: 1.627  Accuracy: 41.01 %
[3,   800] loss: 1.636  Accuracy: 41.60 %
[3,  1000] loss: 1.596  Accuracy: 41.73 %
[3,  1200] loss: 1.582  Accuracy: 41.52 %
[3,  1400] loss: 1.543  Accuracy: 43.17 %
[4,   200] loss: 1.517  Accuracy: 44.28 %
[4,   400] loss: 1.508  Accuracy: 45.50 %
[4,   600] loss: 1.503  Accuracy: 45.83 %
[4,   800] loss: 1.493  Accuracy: 46.98 %
[4,  1000] loss: 1.480  Accuracy: 45.65 %
[4,  1200] loss: 1.472  Accuracy: 47.23 %
[4,  1400] loss: 1.465  Accuracy: 47.72 %
[5,   200] loss: 1.440  Accuracy: 47.90 %
[5,   400] loss: 1.406  Accuracy: 50.01 %
[5,   600] loss: 1.419  Accuracy: 49.09 %
[5,   800] loss: 1.393  Accuracy: 50.10 %
[5,  1000] loss: 1.362  Accuracy: 49.50 %
[5,  1200] loss: 1.367  Accuracy: 49.13 %
[5,  1400] loss: 1.392  Accuracy: 51.04 %
[6,   200] loss: 1.336  Accuracy: 52.19 %
[6,   400] loss: 1.329  Accuracy: 52.20 %
[6,   600] loss: 1.312  Accuracy: 51.44 %
[6,   800] loss: 1.315  Accuracy: 51.34 %
[6,  1000] loss: 1.323  Accuracy: 52.54 %
[6,  1200] loss: 1.323  Accuracy: 53.76 %
[6,  1400] loss: 1.302  Accuracy: 53.15 %
[7,   200] loss: 1.257  Accuracy: 53.11 %
[7,   400] loss: 1.258  Accuracy: 53.91 %
[7,   600] loss: 1.262  Accuracy: 54.56 %
[7,   800] loss: 1.280  Accuracy: 55.07 %
[7,  1000] loss: 1.249  Accuracy: 54.81 %
[7,  1200] loss: 1.255  Accuracy: 54.41 %
[7,  1400] loss: 1.234  Accuracy: 55.69 %
[8,   200] loss: 1.213  Accuracy: 56.52 %
[8,   400] loss: 1.214  Accuracy: 56.52 %
[8,   600] loss: 1.213  Accuracy: 56.60 %
[8,   800] loss: 1.202  Accuracy: 55.38 %
[8,  1000] loss: 1.200  Accuracy: 57.14 %
[8,  1200] loss: 1.190  Accuracy: 56.84 %
[8,  1400] loss: 1.173  Accuracy: 57.08 %
[9,   200] loss: 1.144  Accuracy: 57.51 %
[9,   400] loss: 1.170  Accuracy: 57.25 %
[9,   600] loss: 1.136  Accuracy: 56.35 %
[9,   800] loss: 1.169  Accuracy: 58.69 %
[9,  1000] loss: 1.141  Accuracy: 57.84 %
[9,  1200] loss: 1.146  Accuracy: 56.51 %
[9,  1400] loss: 1.150  Accuracy: 57.88 %
[10,   200] loss: 1.128  Accuracy: 58.77 %
[10,   400] loss: 1.123  Accuracy: 58.69 %
[10,   600] loss: 1.120  Accuracy: 59.92 %
[10,   800] loss: 1.102  Accuracy: 58.37 %
[10,  1000] loss: 1.104  Accuracy: 59.26 %
[10,  1200] loss: 1.101  Accuracy: 59.45 %
[10,  1400] loss: 1.106  Accuracy: 59.75 %
[11,   200] loss: 1.081  Accuracy: 58.35 %
[11,   400] loss: 1.098  Accuracy: 59.52 %
[11,   600] loss: 1.040  Accuracy: 60.00 %
[11,   800] loss: 1.083  Accuracy: 60.39 %
[11,  1000] loss: 1.073  Accuracy: 60.55 %
[11,  1200] loss: 1.074  Accuracy: 61.02 %
[11,  1400] loss: 1.075  Accuracy: 60.78 %
[12,   200] loss: 1.027  Accuracy: 59.02 %
[12,   400] loss: 1.052  Accuracy: 60.14 %
[12,   600] loss: 1.025  Accuracy: 61.39 %
[12,   800] loss: 1.047  Accuracy: 59.45 %
[12,  1000] loss: 1.047  Accuracy: 61.99 %
[12,  1200] loss: 1.055  Accuracy: 60.82 %
[12,  1400] loss: 1.023  Accuracy: 62.17 %
[13,   200] loss: 0.994  Accuracy: 61.23 %
[13,   400] loss: 1.008  Accuracy: 61.94 %
[13,   600] loss: 1.014  Accuracy: 61.18 %
[13,   800] loss: 1.013  Accuracy: 62.04 %
[13,  1000] loss: 1.018  Accuracy: 61.59 %
[13,  1200] loss: 1.010  Accuracy: 61.81 %
[13,  1400] loss: 0.998  Accuracy: 61.81 %
[14,   200] loss: 0.961  Accuracy: 61.17 %
[14,   400] loss: 0.985  Accuracy: 61.63 %
[14,   600] loss: 0.977  Accuracy: 62.18 %
[14,   800] loss: 0.996  Accuracy: 61.84 %
[14,  1000] loss: 0.978  Accuracy: 61.70 %
[14,  1200] loss: 0.974  Accuracy: 61.63 %
[14,  1400] loss: 0.980  Accuracy: 62.09 %
[15,   200] loss: 0.935  Accuracy: 61.29 %
[15,   400] loss: 0.944  Accuracy: 63.11 %
[15,   600] loss: 0.936  Accuracy: 62.98 %
[15,   800] loss: 0.961  Accuracy: 62.76 %
[15,  1000] loss: 0.961  Accuracy: 62.42 %
[15,  1200] loss: 0.956  Accuracy: 61.82 %
[15,  1400] loss: 0.975  Accuracy: 62.35 %
[16,   200] loss: 0.901  Accuracy: 63.24 %
[16,   400] loss: 0.906  Accuracy: 62.88 %
[16,   600] loss: 0.924  Accuracy: 63.13 %
[16,   800] loss: 0.905  Accuracy: 62.71 %
[16,  1000] loss: 0.930  Accuracy: 62.22 %
[16,  1200] loss: 0.950  Accuracy: 62.95 %
[16,  1400] loss: 0.953  Accuracy: 63.11 %
[17,   200] loss: 0.894  Accuracy: 63.93 %
[17,   400] loss: 0.896  Accuracy: 63.65 %
[17,   600] loss: 0.880  Accuracy: 62.02 %
[17,   800] loss: 0.889  Accuracy: 63.14 %
[17,  1000] loss: 0.897  Accuracy: 63.36 %
[17,  1200] loss: 0.918  Accuracy: 63.98 %
[17,  1400] loss: 0.925  Accuracy: 63.66 %
[18,   200] loss: 0.853  Accuracy: 63.52 %
[18,   400] loss: 0.852  Accuracy: 62.60 %
[18,   600] loss: 0.877  Accuracy: 64.43 %
[18,   800] loss: 0.872  Accuracy: 63.48 %
[18,  1000] loss: 0.879  Accuracy: 63.45 %
[18,  1200] loss: 0.905  Accuracy: 63.76 %
[18,  1400] loss: 0.897  Accuracy: 63.30 %
[19,   200] loss: 0.823  Accuracy: 63.08 %
[19,   400] loss: 0.833  Accuracy: 63.93 %
[19,   600] loss: 0.855  Accuracy: 62.89 %
[19,   800] loss: 0.845  Accuracy: 63.44 %
[19,  1000] loss: 0.872  Accuracy: 63.94 %
[19,  1200] loss: 0.861  Accuracy: 64.28 %
[19,  1400] loss: 0.853  Accuracy: 64.58 %
[20,   200] loss: 0.817  Accuracy: 63.54 %
[20,   400] loss: 0.809  Accuracy: 63.82 %
[20,   600] loss: 0.813  Accuracy: 63.07 %
[20,   800] loss: 0.815  Accuracy: 64.33 %
[20,  1000] loss: 0.852  Accuracy: 64.66 %
[20,  1200] loss: 0.850  Accuracy: 63.97 %
[20,  1400] loss: 0.844  Accuracy: 64.47 %
Finished Training
Accuracy: 64.12 %
GroundTruth:    cat  ship  ship plane
Predicted:    cat  ship  ship  ship
Accuracy of plane : 61 %
Accuracy of   car : 80 %
Accuracy of  bird : 50 %
Accuracy of   cat : 53 %
Accuracy of  deer : 50 %
Accuracy of   dog : 52 %
Accuracy of  frog : 66 %
Accuracy of horse : 67 %
Accuracy of  ship : 82 %
Accuracy of truck : 75 %
elapsed time: 602.200 [sec]
import torch.nn as nn
import torch.nn.functional as F

class VGG13(nn.Module):
    def __init__(self): # , num_classes):
        super(VGG13, self).__init__()
        num_classes=10

        self.block1_output = nn.Sequential (
            nn.Conv2d(3, 64, kernel_size=3, padding=1),
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True),
            nn.Conv2d(64, 64, kernel_size=3, padding=1),
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=2, stride=2),
        )

        self.block2_output = nn.Sequential (
            nn.Conv2d(64, 128, kernel_size=3, padding=1),
            nn.BatchNorm2d(128),
            nn.ReLU(inplace=True),
            nn.Conv2d(128, 128, kernel_size=3, padding=1),
            nn.BatchNorm2d(128),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=2, stride=2),
        )

        self.block3_output = nn.Sequential (
            nn.Conv2d(128, 256, kernel_size=3, padding=1),
            nn.BatchNorm2d(256),
            nn.ReLU(inplace=True),
            nn.Conv2d(256, 256, kernel_size=3, padding=1),
            nn.BatchNorm2d(256),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=2, stride=2),
        )

        self.block4_output = nn.Sequential (
            nn.Conv2d(256, 512, kernel_size=3, padding=1),
            nn.BatchNorm2d(512),
            nn.ReLU(inplace=True),
            nn.Conv2d(512, 512, kernel_size=3, padding=1),
            nn.BatchNorm2d(512),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=2, stride=2),
        )

        self.block5_output = nn.Sequential (
            nn.Conv2d(512, 512, kernel_size=3, padding=1),
            nn.BatchNorm2d(512),
            nn.ReLU(inplace=True),
            nn.Conv2d(512, 512, kernel_size=3, padding=1),
            nn.BatchNorm2d(512),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=2, stride=2),
        )

        self.classifier = nn.Sequential(
            nn.Linear(512, 512),  #512 * 7 * 7, 4096),
            nn.ReLU(True),
            nn.Dropout(),
            nn.Linear(512, 32 ),  #4096, 4096),
            nn.ReLU(True),
            nn.Dropout(),
            nn.Linear(32, num_classes),  #4096
        )

    def forward(self, x):
        x = self.block1_output(x)
        x = self.block2_output(x)
        x = self.block3_output(x)
        x = self.block4_output(x)
        x = self.block5_output(x)
        #print(x.size())

        x = x.view(x.size(0), -1)
        x = self.classifier(x)
        return x
(keras-gpu) C:\Users\user\pytorch\cifar10>python pytorch_cifar10_.py
Files already downloaded and verified
Files already downloaded and verified
cuda:0
[1,   200] loss: 2.156  Accuracy: 24.39 %
[1,   400] loss: 1.869  Accuracy: 33.88 %
[1,   600] loss: 1.728  Accuracy: 39.04 %
[1,   800] loss: 1.578  Accuracy: 43.44 %
[1,  1000] loss: 1.496  Accuracy: 47.75 %
[1,  1200] loss: 1.436  Accuracy: 52.35 %
[1,  1400] loss: 1.363  Accuracy: 54.04 %
[2,   200] loss: 1.231  Accuracy: 57.80 %
[2,   400] loss: 1.209  Accuracy: 58.82 %
[2,   600] loss: 1.163  Accuracy: 61.31 %
[2,   800] loss: 1.131  Accuracy: 61.99 %
[2,  1000] loss: 1.115  Accuracy: 62.97 %
[2,  1200] loss: 1.084  Accuracy: 63.12 %
[2,  1400] loss: 1.028  Accuracy: 65.87 %
[3,   200] loss: 0.925  Accuracy: 65.56 %
[3,   400] loss: 0.928  Accuracy: 66.94 %
[3,   600] loss: 0.910  Accuracy: 68.22 %
[3,   800] loss: 0.916  Accuracy: 67.86 %
[3,  1000] loss: 0.902  Accuracy: 69.14 %
[3,  1200] loss: 0.848  Accuracy: 69.07 %
[3,  1400] loss: 0.883  Accuracy: 70.32 %
[4,   200] loss: 0.752  Accuracy: 71.35 %
[4,   400] loss: 0.782  Accuracy: 71.42 %
[4,   600] loss: 0.757  Accuracy: 71.67 %
[4,   800] loss: 0.767  Accuracy: 72.89 %
[4,  1000] loss: 0.767  Accuracy: 73.36 %
[4,  1200] loss: 0.746  Accuracy: 73.61 %
[4,  1400] loss: 0.764  Accuracy: 73.88 %
[5,   200] loss: 0.647  Accuracy: 74.12 %
[5,   400] loss: 0.627  Accuracy: 74.62 %
[5,   600] loss: 0.618  Accuracy: 74.07 %
[5,   800] loss: 0.663  Accuracy: 75.19 %
[5,  1000] loss: 0.661  Accuracy: 74.28 %
[5,  1200] loss: 0.649  Accuracy: 76.79 %
[5,  1400] loss: 0.650  Accuracy: 74.59 %
[6,   200] loss: 0.556  Accuracy: 77.10 %
[6,   400] loss: 0.543  Accuracy: 75.73 %
[6,   600] loss: 0.528  Accuracy: 76.50 %
[6,   800] loss: 0.552  Accuracy: 76.03 %
[6,  1000] loss: 0.568  Accuracy: 77.13 %
[6,  1200] loss: 0.580  Accuracy: 76.73 %
[6,  1400] loss: 0.563  Accuracy: 76.20 %
[7,   200] loss: 0.475  Accuracy: 77.29 %
[7,   400] loss: 0.470  Accuracy: 77.17 %
[7,   600] loss: 0.503  Accuracy: 77.16 %
[7,   800] loss: 0.484  Accuracy: 77.60 %
[7,  1000] loss: 0.485  Accuracy: 78.23 %
[7,  1200] loss: 0.491  Accuracy: 78.32 %
[7,  1400] loss: 0.480  Accuracy: 78.08 %
[8,   200] loss: 0.386  Accuracy: 78.60 %
[8,   400] loss: 0.413  Accuracy: 78.82 %
[8,   600] loss: 0.401  Accuracy: 78.03 %
[8,   800] loss: 0.421  Accuracy: 78.75 %
[8,  1000] loss: 0.450  Accuracy: 77.68 %
[8,  1200] loss: 0.439  Accuracy: 78.55 %
[8,  1400] loss: 0.420  Accuracy: 79.05 %
[9,   200] loss: 0.315  Accuracy: 79.21 %
[9,   400] loss: 0.366  Accuracy: 78.72 %
[9,   600] loss: 0.374  Accuracy: 79.63 %
[9,   800] loss: 0.378  Accuracy: 79.75 %
[9,  1000] loss: 0.371  Accuracy: 78.52 %
[9,  1200] loss: 0.377  Accuracy: 79.65 %
[9,  1400] loss: 0.396  Accuracy: 79.51 %
[10,   200] loss: 0.306  Accuracy: 79.25 %
[10,   400] loss: 0.320  Accuracy: 79.06 %
[10,   600] loss: 0.341  Accuracy: 79.20 %
[10,   800] loss: 0.340  Accuracy: 79.21 %
[10,  1000] loss: 0.327  Accuracy: 78.73 %
[10,  1200] loss: 0.334  Accuracy: 79.49 %
[10,  1400] loss: 0.335  Accuracy: 79.33 %
[11,   200] loss: 0.253  Accuracy: 78.67 %
[11,   400] loss: 0.267  Accuracy: 79.47 %
[11,   600] loss: 0.278  Accuracy: 79.17 %
[11,   800] loss: 0.294  Accuracy: 80.12 %
[11,  1000] loss: 0.311  Accuracy: 79.86 %
[11,  1200] loss: 0.299  Accuracy: 80.65 %
[11,  1400] loss: 0.297  Accuracy: 80.39 %
[12,   200] loss: 0.226  Accuracy: 80.51 %
[12,   400] loss: 0.237  Accuracy: 80.22 %
[12,   600] loss: 0.253  Accuracy: 79.49 %
[12,   800] loss: 0.261  Accuracy: 79.71 %
[12,  1000] loss: 0.252  Accuracy: 80.68 %
[12,  1200] loss: 0.272  Accuracy: 80.75 %
[12,  1400] loss: 0.281  Accuracy: 80.64 %
[13,   200] loss: 0.201  Accuracy: 80.44 %
[13,   400] loss: 0.234  Accuracy: 80.49 %
[13,   600] loss: 0.220  Accuracy: 79.90 %
[13,   800] loss: 0.221  Accuracy: 80.00 %
[13,  1000] loss: 0.236  Accuracy: 80.46 %
[13,  1200] loss: 0.216  Accuracy: 80.66 %
[13,  1400] loss: 0.239  Accuracy: 80.45 %
[14,   200] loss: 0.168  Accuracy: 80.75 %
[14,   400] loss: 0.203  Accuracy: 77.86 %
[14,   600] loss: 0.231  Accuracy: 80.50 %
[14,   800] loss: 0.192  Accuracy: 80.81 %
[14,  1000] loss: 0.195  Accuracy: 80.73 %
[14,  1200] loss: 0.209  Accuracy: 81.04 %
[14,  1400] loss: 0.207  Accuracy: 80.03 %
[15,   200] loss: 0.142  Accuracy: 81.15 %
[15,   400] loss: 0.169  Accuracy: 80.88 %
[15,   600] loss: 0.174  Accuracy: 80.52 %
[15,   800] loss: 0.167  Accuracy: 80.88 %
[15,  1000] loss: 0.208  Accuracy: 80.02 %
[15,  1200] loss: 0.181  Accuracy: 81.65 %
[15,  1400] loss: 0.198  Accuracy: 81.14 %
[16,   200] loss: 0.125  Accuracy: 81.02 %
[16,   400] loss: 0.142  Accuracy: 81.41 %
[16,   600] loss: 0.172  Accuracy: 80.92 %
[16,   800] loss: 0.157  Accuracy: 82.58 %
[16,  1000] loss: 0.140  Accuracy: 81.21 %
[16,  1200] loss: 0.179  Accuracy: 80.29 %
[16,  1400] loss: 0.185  Accuracy: 81.94 %
[17,   200] loss: 0.125  Accuracy: 80.94 %
[17,   400] loss: 0.155  Accuracy: 80.92 %
[17,   600] loss: 0.140  Accuracy: 81.45 %
[17,   800] loss: 0.169  Accuracy: 81.80 %
[17,  1000] loss: 0.162  Accuracy: 81.31 %
[17,  1200] loss: 0.141  Accuracy: 81.42 %
[17,  1400] loss: 0.185  Accuracy: 80.21 %
[18,   200] loss: 0.140  Accuracy: 81.76 %
[18,   400] loss: 0.129  Accuracy: 80.78 %
[18,   600] loss: 0.135  Accuracy: 81.52 %
[18,   800] loss: 0.139  Accuracy: 82.01 %
[18,  1000] loss: 0.149  Accuracy: 81.43 %
[18,  1200] loss: 0.134  Accuracy: 81.39 %
[18,  1400] loss: 0.162  Accuracy: 80.56 %
[19,   200] loss: 0.102  Accuracy: 82.01 %
[19,   400] loss: 0.100  Accuracy: 80.91 %
[19,   600] loss: 0.148  Accuracy: 80.74 %
[19,   800] loss: 0.115  Accuracy: 82.43 %
[19,  1000] loss: 0.110  Accuracy: 81.74 %
[19,  1200] loss: 0.115  Accuracy: 80.78 %
[19,  1400] loss: 0.142  Accuracy: 81.88 %
[20,   200] loss: 0.109  Accuracy: 82.20 %
[20,   400] loss: 0.112  Accuracy: 81.65 %
[20,   600] loss: 0.139  Accuracy: 81.70 %
[20,   800] loss: 0.109  Accuracy: 82.88 %
[20,  1000] loss: 0.116  Accuracy: 82.73 %
[20,  1200] loss: 0.112  Accuracy: 82.07 %
[20,  1400] loss: 0.123  Accuracy: 82.28 %
Finished Training
Accuracy: 82.00 %
GroundTruth:    cat  ship  ship plane
Predicted:    cat  ship  ship plane
Accuracy of plane : 88 %
Accuracy of   car : 91 %
Accuracy of  bird : 75 %
Accuracy of   cat : 55 %
Accuracy of  deer : 84 %
Accuracy of   dog : 70 %
Accuracy of  frog : 84 %
Accuracy of horse : 81 %
Accuracy of  ship : 92 %
Accuracy of truck : 87 %
elapsed time: 6227.035 [sec]
(keras-gpu) C:\Users\user\pytorch\cifar10>pip install torchsummary
Collecting torchsummary
  Downloading https://files.pythonhosted.org/packages/7d/18/1474d06f721b86e6a9b9d7392ad68bed711a02f3b61ac43f13c719db50a6/torchsummary-1.5.1-py3-none-any.whl
Installing collected packages: torchsummary
Successfully installed torchsummary-1.5.1

(keras-gpu) C:\Users\user\pytorch\cifar10>python pytorch_cifar10_.py
Files already downloaded and verified
Files already downloaded and verified
cuda:0
----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
            Conv2d-1           [-1, 64, 32, 32]           1,792
       BatchNorm2d-2           [-1, 64, 32, 32]             128
              ReLU-3           [-1, 64, 32, 32]               0
            Conv2d-4           [-1, 64, 32, 32]          36,928
       BatchNorm2d-5           [-1, 64, 32, 32]             128
              ReLU-6           [-1, 64, 32, 32]               0
         MaxPool2d-7           [-1, 64, 16, 16]               0
            Conv2d-8          [-1, 128, 16, 16]          73,856
       BatchNorm2d-9          [-1, 128, 16, 16]             256
             ReLU-10          [-1, 128, 16, 16]               0
           Conv2d-11          [-1, 128, 16, 16]         147,584
      BatchNorm2d-12          [-1, 128, 16, 16]             256
             ReLU-13          [-1, 128, 16, 16]               0
        MaxPool2d-14            [-1, 128, 8, 8]               0
           Conv2d-15            [-1, 256, 8, 8]         295,168
      BatchNorm2d-16            [-1, 256, 8, 8]             512
             ReLU-17            [-1, 256, 8, 8]               0
           Conv2d-18            [-1, 256, 8, 8]         590,080
      BatchNorm2d-19            [-1, 256, 8, 8]             512
             ReLU-20            [-1, 256, 8, 8]               0
        MaxPool2d-21            [-1, 256, 4, 4]               0
           Conv2d-22            [-1, 512, 4, 4]       1,180,160
      BatchNorm2d-23            [-1, 512, 4, 4]           1,024
             ReLU-24            [-1, 512, 4, 4]               0
           Conv2d-25            [-1, 512, 4, 4]       2,359,808
      BatchNorm2d-26            [-1, 512, 4, 4]           1,024
             ReLU-27            [-1, 512, 4, 4]               0
        MaxPool2d-28            [-1, 512, 2, 2]               0
           Conv2d-29            [-1, 512, 2, 2]       2,359,808
      BatchNorm2d-30            [-1, 512, 2, 2]           1,024
             ReLU-31            [-1, 512, 2, 2]               0
           Conv2d-32            [-1, 512, 2, 2]       2,359,808
      BatchNorm2d-33            [-1, 512, 2, 2]           1,024
             ReLU-34            [-1, 512, 2, 2]               0
        MaxPool2d-35            [-1, 512, 1, 1]               0
           Linear-36                  [-1, 512]         262,656
             ReLU-37                  [-1, 512]               0
          Dropout-38                  [-1, 512]               0
           Linear-39                   [-1, 32]          16,416
             ReLU-40                   [-1, 32]               0
          Dropout-41                   [-1, 32]               0
           Linear-42                   [-1, 10]             330
================================================================
Total params: 9,690,282
Trainable params: 9,690,282
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.01
Forward/backward pass size (MB): 5.97
Params size (MB): 36.97
Estimated Total Size (MB): 42.95
----------------------------------------------------------------
(keras-gpu) C:\Users\user\pytorch\cifar10>python pytorch_cifar10_.py
Files already downloaded and verified
Files already downloaded and verified
cuda:0
----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
            Conv2d-1           [-1, 64, 32, 32]           1,792
       BatchNorm2d-2           [-1, 64, 32, 32]             128
              ReLU-3           [-1, 64, 32, 32]               0
            Conv2d-4           [-1, 64, 32, 32]          36,928
       BatchNorm2d-5           [-1, 64, 32, 32]             128
              ReLU-6           [-1, 64, 32, 32]               0
         MaxPool2d-7           [-1, 64, 16, 16]               0
            Conv2d-8          [-1, 128, 16, 16]          73,856
       BatchNorm2d-9          [-1, 128, 16, 16]             256
             ReLU-10          [-1, 128, 16, 16]               0
           Conv2d-11          [-1, 128, 16, 16]         147,584
      BatchNorm2d-12          [-1, 128, 16, 16]             256
             ReLU-13          [-1, 128, 16, 16]               0
        MaxPool2d-14            [-1, 128, 8, 8]               0
           Conv2d-15            [-1, 256, 8, 8]         295,168
      BatchNorm2d-16            [-1, 256, 8, 8]             512
             ReLU-17            [-1, 256, 8, 8]               0
           Conv2d-18            [-1, 256, 8, 8]         590,080
      BatchNorm2d-19            [-1, 256, 8, 8]             512
             ReLU-20            [-1, 256, 8, 8]               0
        MaxPool2d-21            [-1, 256, 4, 4]               0
           Conv2d-22            [-1, 512, 4, 4]       1,180,160
      BatchNorm2d-23            [-1, 512, 4, 4]           1,024
             ReLU-24            [-1, 512, 4, 4]               0
           Conv2d-25            [-1, 512, 4, 4]       2,359,808
      BatchNorm2d-26            [-1, 512, 4, 4]           1,024
             ReLU-27            [-1, 512, 4, 4]               0
        MaxPool2d-28            [-1, 512, 2, 2]               0
           Conv2d-29            [-1, 512, 2, 2]       2,359,808
      BatchNorm2d-30            [-1, 512, 2, 2]           1,024
             ReLU-31            [-1, 512, 2, 2]               0
           Conv2d-32            [-1, 512, 2, 2]       2,359,808
      BatchNorm2d-33            [-1, 512, 2, 2]           1,024
             ReLU-34            [-1, 512, 2, 2]               0
        MaxPool2d-35            [-1, 512, 1, 1]               0
           Linear-36                 [-1, 4096]       2,101,248
             ReLU-37                 [-1, 4096]               0
          Dropout-38                 [-1, 4096]               0
           Linear-39                 [-1, 4096]      16,781,312
             ReLU-40                 [-1, 4096]               0
          Dropout-41                 [-1, 4096]               0
           Linear-42                   [-1, 10]          40,970
================================================================
Total params: 28,334,410
Trainable params: 28,334,410
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.01
Forward/backward pass size (MB): 6.14
Params size (MB): 108.09
Estimated Total Size (MB): 114.24
----------------------------------------------------------------
[1,   200] loss: 1.935  Accuracy: 37.73 %
[1,   400] loss: 1.564  Accuracy: 46.54 %
[1,   600] loss: 1.355  Accuracy: 51.21 %
[1,   800] loss: 1.243  Accuracy: 57.66 %
[1,  1000] loss: 1.149  Accuracy: 61.24 %
[1,  1200] loss: 1.081  Accuracy: 64.30 %
[1,  1400] loss: 1.037  Accuracy: 65.43 %
[2,   200] loss: 0.876  Accuracy: 68.62 %
[2,   400] loss: 0.840  Accuracy: 68.47 %
[2,   600] loss: 0.819  Accuracy: 70.76 %
[2,   800] loss: 0.812  Accuracy: 70.56 %
[2,  1000] loss: 0.776  Accuracy: 72.58 %
[2,  1200] loss: 0.772  Accuracy: 72.98 %
[2,  1400] loss: 0.737  Accuracy: 73.90 %
[3,   200] loss: 0.590  Accuracy: 74.99 %
[3,   400] loss: 0.589  Accuracy: 74.98 %
[3,   600] loss: 0.575  Accuracy: 76.83 %
[3,   800] loss: 0.603  Accuracy: 76.16 %
[3,  1000] loss: 0.586  Accuracy: 75.61 %
[3,  1200] loss: 0.594  Accuracy: 77.48 %
[3,  1400] loss: 0.575  Accuracy: 77.80 %
[4,   200] loss: 0.421  Accuracy: 76.95 %
[4,   400] loss: 0.474  Accuracy: 79.14 %
[4,   600] loss: 0.450  Accuracy: 78.46 %
[4,   800] loss: 0.458  Accuracy: 78.70 %
[4,  1000] loss: 0.436  Accuracy: 78.99 %
[4,  1200] loss: 0.460  Accuracy: 78.49 %
[4,  1400] loss: 0.439  Accuracy: 79.29 %
[5,   200] loss: 0.324  Accuracy: 80.00 %
[5,   400] loss: 0.326  Accuracy: 79.82 %
[5,   600] loss: 0.340  Accuracy: 79.58 %
[5,   800] loss: 0.355  Accuracy: 79.85 %
[5,  1000] loss: 0.353  Accuracy: 78.64 %
[5,  1200] loss: 0.358  Accuracy: 79.53 %
[5,  1400] loss: 0.375  Accuracy: 80.18 %
[6,   200] loss: 0.197  Accuracy: 80.41 %
[6,   400] loss: 0.240  Accuracy: 79.51 %
[6,   600] loss: 0.253  Accuracy: 80.12 %
[6,   800] loss: 0.257  Accuracy: 79.99 %
[6,  1000] loss: 0.280  Accuracy: 80.19 %
[6,  1200] loss: 0.290  Accuracy: 80.65 %
[6,  1400] loss: 0.279  Accuracy: 80.54 %
[7,   200] loss: 0.163  Accuracy: 80.61 %
[7,   400] loss: 0.159  Accuracy: 80.54 %
[7,   600] loss: 0.214  Accuracy: 80.71 %
[7,   800] loss: 0.207  Accuracy: 80.06 %
[7,  1000] loss: 0.230  Accuracy: 80.94 %
[7,  1200] loss: 0.202  Accuracy: 80.87 %
[7,  1400] loss: 0.229  Accuracy: 80.88 %
[8,   200] loss: 0.111  Accuracy: 81.43 %
[8,   400] loss: 0.117  Accuracy: 80.23 %
[8,   600] loss: 0.141  Accuracy: 81.27 %
[8,   800] loss: 0.144  Accuracy: 80.94 %
[8,  1000] loss: 0.162  Accuracy: 81.23 %
[8,  1200] loss: 0.186  Accuracy: 80.36 %
[8,  1400] loss: 0.172  Accuracy: 81.31 %
[9,   200] loss: 0.115  Accuracy: 82.08 %
[9,   400] loss: 0.093  Accuracy: 81.80 %
[9,   600] loss: 0.110  Accuracy: 80.76 %
[9,   800] loss: 0.124  Accuracy: 80.36 %
[9,  1000] loss: 0.121  Accuracy: 81.47 %
[9,  1200] loss: 0.127  Accuracy: 82.10 %
[9,  1400] loss: 0.126  Accuracy: 82.00 %
[10,   200] loss: 0.069  Accuracy: 81.54 %
[10,   400] loss: 0.076  Accuracy: 81.65 %
[10,   600] loss: 0.086  Accuracy: 81.65 %
[10,   800] loss: 0.096  Accuracy: 81.21 %
[10,  1000] loss: 0.097  Accuracy: 81.36 %
[10,  1200] loss: 0.125  Accuracy: 81.14 %
[10,  1400] loss: 0.115  Accuracy: 81.67 %
[11,   200] loss: 0.065  Accuracy: 82.97 %
[11,   400] loss: 0.072  Accuracy: 82.64 %
[11,   600] loss: 0.068  Accuracy: 81.99 %
[11,   800] loss: 0.078  Accuracy: 82.35 %
[11,  1000] loss: 0.092  Accuracy: 80.93 %
[11,  1200] loss: 0.097  Accuracy: 82.51 %
[11,  1400] loss: 0.089  Accuracy: 82.36 %
[12,   200] loss: 0.052  Accuracy: 82.49 %
[12,   400] loss: 0.044  Accuracy: 82.01 %
[12,   600] loss: 0.059  Accuracy: 82.71 %
[12,   800] loss: 0.060  Accuracy: 82.39 %
[12,  1000] loss: 0.073  Accuracy: 82.73 %
[12,  1200] loss: 0.057  Accuracy: 82.53 %
[12,  1400] loss: 0.067  Accuracy: 82.27 %
[13,   200] loss: 0.050  Accuracy: 82.59 %
[13,   400] loss: 0.051  Accuracy: 82.51 %
[13,   600] loss: 0.046  Accuracy: 83.08 %
[13,   800] loss: 0.041  Accuracy: 82.59 %
[13,  1000] loss: 0.057  Accuracy: 82.74 %
[13,  1200] loss: 0.072  Accuracy: 82.47 %
[13,  1400] loss: 0.055  Accuracy: 82.31 %
[14,   200] loss: 0.046  Accuracy: 82.98 %
[14,   400] loss: 0.048  Accuracy: 82.69 %
[14,   600] loss: 0.036  Accuracy: 82.45 %
[14,   800] loss: 0.066  Accuracy: 82.31 %
[14,  1000] loss: 0.047  Accuracy: 82.56 %
[14,  1200] loss: 0.057  Accuracy: 82.21 %
[14,  1400] loss: 0.052  Accuracy: 81.95 %
[15,   200] loss: 0.045  Accuracy: 82.63 %
[15,   400] loss: 0.042  Accuracy: 82.32 %
[15,   600] loss: 0.033  Accuracy: 82.95 %
[15,   800] loss: 0.045  Accuracy: 82.65 %
[15,  1000] loss: 0.050  Accuracy: 82.56 %
[15,  1200] loss: 0.051  Accuracy: 81.83 %
[15,  1400] loss: 0.056  Accuracy: 82.11 %
[16,   200] loss: 0.029  Accuracy: 82.95 %
[16,   400] loss: 0.024  Accuracy: 82.57 %
[16,   600] loss: 0.036  Accuracy: 81.98 %
[16,   800] loss: 0.036  Accuracy: 82.66 %
[16,  1000] loss: 0.042  Accuracy: 82.54 %
[16,  1200] loss: 0.032  Accuracy: 82.41 %
[16,  1400] loss: 0.041  Accuracy: 82.57 %
[17,   200] loss: 0.028  Accuracy: 82.20 %
[17,   400] loss: 0.027  Accuracy: 83.26 %
[17,   600] loss: 0.025  Accuracy: 83.30 %
[17,   800] loss: 0.027  Accuracy: 82.94 %
[17,  1000] loss: 0.037  Accuracy: 81.51 %
[17,  1200] loss: 0.031  Accuracy: 82.83 %
[17,  1400] loss: 0.034  Accuracy: 82.57 %
[18,   200] loss: 0.030  Accuracy: 82.78 %
[18,   400] loss: 0.024  Accuracy: 83.46 %
[18,   600] loss: 0.020  Accuracy: 83.02 %
[18,   800] loss: 0.016  Accuracy: 83.47 %
[18,  1000] loss: 0.030  Accuracy: 82.85 %
[18,  1200] loss: 0.031  Accuracy: 82.56 %
[18,  1400] loss: 0.040  Accuracy: 82.16 %
[19,   200] loss: 0.023  Accuracy: 82.91 %
[19,   400] loss: 0.015  Accuracy: 82.99 %
[19,   600] loss: 0.017  Accuracy: 83.53 %
[19,   800] loss: 0.025  Accuracy: 82.35 %
[19,  1000] loss: 0.033  Accuracy: 82.55 %
[19,  1200] loss: 0.040  Accuracy: 82.92 %
[19,  1400] loss: 0.029  Accuracy: 82.75 %
[20,   200] loss: 0.020  Accuracy: 82.80 %
[20,   400] loss: 0.016  Accuracy: 83.21 %
[20,   600] loss: 0.017  Accuracy: 82.76 %
[20,   800] loss: 0.017  Accuracy: 82.93 %
[20,  1000] loss: 0.018  Accuracy: 83.16 %
[20,  1200] loss: 0.024  Accuracy: 83.23 %
[20,  1400] loss: 0.023  Accuracy: 82.91 %
Finished Training
Accuracy: 82.15 %
GroundTruth:    cat  ship  ship plane
Predicted:    cat  ship  ship plane
Accuracy of plane : 84 %
Accuracy of   car : 91 %
Accuracy of  bird : 69 %
Accuracy of   cat : 59 %
Accuracy of  deer : 81 %
Accuracy of   dog : 76 %
Accuracy of  frog : 90 %
Accuracy of horse : 86 %
Accuracy of  ship : 94 %
Accuracy of truck : 88 %
elapsed time: 2177.621 [sec]
(keras-gpu) C:\Users\user\pytorch\cifar10>python pytorch_cifar10_.py
Files already downloaded and verified
Files already downloaded and verified
cuda:0
----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
            Conv2d-1           [-1, 64, 32, 32]           1,792
       BatchNorm2d-2           [-1, 64, 32, 32]             128
              ReLU-3           [-1, 64, 32, 32]               0
            Conv2d-4           [-1, 64, 32, 32]          36,928
       BatchNorm2d-5           [-1, 64, 32, 32]             128
              ReLU-6           [-1, 64, 32, 32]               0
         MaxPool2d-7           [-1, 64, 16, 16]               0
            Conv2d-8          [-1, 128, 16, 16]          73,856
       BatchNorm2d-9          [-1, 128, 16, 16]             256
             ReLU-10          [-1, 128, 16, 16]               0
           Conv2d-11          [-1, 128, 16, 16]         147,584
      BatchNorm2d-12          [-1, 128, 16, 16]             256
             ReLU-13          [-1, 128, 16, 16]               0
        MaxPool2d-14            [-1, 128, 8, 8]               0
           Conv2d-15            [-1, 256, 8, 8]         295,168
      BatchNorm2d-16            [-1, 256, 8, 8]             512
             ReLU-17            [-1, 256, 8, 8]               0
           Conv2d-18            [-1, 256, 8, 8]         590,080
      BatchNorm2d-19            [-1, 256, 8, 8]             512
             ReLU-20            [-1, 256, 8, 8]               0
        MaxPool2d-21            [-1, 256, 4, 4]               0
           Conv2d-22            [-1, 512, 4, 4]       1,180,160
      BatchNorm2d-23            [-1, 512, 4, 4]           1,024
             ReLU-24            [-1, 512, 4, 4]               0
           Conv2d-25            [-1, 512, 4, 4]       2,359,808
      BatchNorm2d-26            [-1, 512, 4, 4]           1,024
             ReLU-27            [-1, 512, 4, 4]               0
        MaxPool2d-28            [-1, 512, 2, 2]               0
           Conv2d-29            [-1, 512, 2, 2]       2,359,808
      BatchNorm2d-30            [-1, 512, 2, 2]           1,024
             ReLU-31            [-1, 512, 2, 2]               0
           Conv2d-32            [-1, 512, 2, 2]       2,359,808
      BatchNorm2d-33            [-1, 512, 2, 2]           1,024
             ReLU-34            [-1, 512, 2, 2]               0
        MaxPool2d-35            [-1, 512, 1, 1]               0
           Linear-36                   [-1, 10]           5,130
================================================================
Total params: 9,416,010
Trainable params: 9,416,010
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.01
Forward/backward pass size (MB): 5.96
Params size (MB): 35.92
Estimated Total Size (MB): 41.89
----------------------------------------------------------------
[1,   200] loss: 1.694  Accuracy: 45.04 %
[1,   400] loss: 1.393  Accuracy: 52.05 %
[1,   600] loss: 1.245  Accuracy: 59.09 %
[1,   800] loss: 1.119  Accuracy: 63.34 %
[1,  1000] loss: 1.034  Accuracy: 67.15 %
[1,  1200] loss: 0.987  Accuracy: 64.93 %
[1,  1400] loss: 0.922  Accuracy: 69.80 %
[2,   200] loss: 0.732  Accuracy: 71.40 %
[2,   400] loss: 0.765  Accuracy: 70.54 %
[2,   600] loss: 0.730  Accuracy: 72.81 %
[2,   800] loss: 0.703  Accuracy: 74.63 %
[2,  1000] loss: 0.726  Accuracy: 74.41 %
[2,  1200] loss: 0.695  Accuracy: 75.12 %
[2,  1400] loss: 0.676  Accuracy: 76.17 %
[3,   200] loss: 0.484  Accuracy: 76.41 %
[3,   400] loss: 0.496  Accuracy: 76.92 %
[3,   600] loss: 0.519  Accuracy: 76.57 %
[3,   800] loss: 0.521  Accuracy: 76.75 %
[3,  1000] loss: 0.523  Accuracy: 77.10 %
[3,  1200] loss: 0.499  Accuracy: 77.52 %
[3,  1400] loss: 0.506  Accuracy: 78.88 %
[4,   200] loss: 0.320  Accuracy: 79.10 %
[4,   400] loss: 0.348  Accuracy: 78.58 %
[4,   600] loss: 0.368  Accuracy: 78.86 %
[4,   800] loss: 0.398  Accuracy: 79.05 %
[4,  1000] loss: 0.387  Accuracy: 79.22 %
[4,  1200] loss: 0.409  Accuracy: 79.54 %
[4,  1400] loss: 0.416  Accuracy: 78.79 %
[5,   200] loss: 0.212  Accuracy: 79.96 %
[5,   400] loss: 0.243  Accuracy: 80.23 %
[5,   600] loss: 0.257  Accuracy: 79.61 %
[5,   800] loss: 0.270  Accuracy: 79.62 %
[5,  1000] loss: 0.297  Accuracy: 79.50 %
[5,  1200] loss: 0.282  Accuracy: 79.86 %
[5,  1400] loss: 0.307  Accuracy: 79.68 %
[6,   200] loss: 0.159  Accuracy: 80.35 %
[6,   400] loss: 0.168  Accuracy: 78.92 %
[6,   600] loss: 0.176  Accuracy: 80.20 %
[6,   800] loss: 0.198  Accuracy: 79.92 %
[6,  1000] loss: 0.203  Accuracy: 79.62 %
[6,  1200] loss: 0.196  Accuracy: 80.84 %
[6,  1400] loss: 0.223  Accuracy: 80.23 %
[7,   200] loss: 0.117  Accuracy: 80.72 %
[7,   400] loss: 0.112  Accuracy: 80.82 %
[7,   600] loss: 0.111  Accuracy: 80.64 %
[7,   800] loss: 0.134  Accuracy: 80.78 %
[7,  1000] loss: 0.137  Accuracy: 79.52 %
[7,  1200] loss: 0.160  Accuracy: 80.54 %
[7,  1400] loss: 0.149  Accuracy: 80.22 %
[8,   200] loss: 0.080  Accuracy: 80.49 %
[8,   400] loss: 0.080  Accuracy: 79.94 %
[8,   600] loss: 0.081  Accuracy: 81.20 %
[8,   800] loss: 0.087  Accuracy: 79.86 %
[8,  1000] loss: 0.107  Accuracy: 79.85 %
[8,  1200] loss: 0.128  Accuracy: 81.13 %
[8,  1400] loss: 0.124  Accuracy: 80.82 %
[9,   200] loss: 0.064  Accuracy: 81.60 %
[9,   400] loss: 0.070  Accuracy: 81.56 %
[9,   600] loss: 0.076  Accuracy: 80.87 %
[9,   800] loss: 0.079  Accuracy: 81.40 %
[9,  1000] loss: 0.109  Accuracy: 79.99 %
[9,  1200] loss: 0.112  Accuracy: 80.14 %
[9,  1400] loss: 0.092  Accuracy: 80.49 %
[10,   200] loss: 0.075  Accuracy: 81.39 %
[10,   400] loss: 0.052  Accuracy: 80.67 %
[10,   600] loss: 0.055  Accuracy: 80.81 %
[10,   800] loss: 0.048  Accuracy: 81.62 %
[10,  1000] loss: 0.050  Accuracy: 81.03 %
[10,  1200] loss: 0.072  Accuracy: 80.54 %
[10,  1400] loss: 0.092  Accuracy: 80.93 %
[11,   200] loss: 0.051  Accuracy: 81.15 %
[11,   400] loss: 0.042  Accuracy: 81.66 %
[11,   600] loss: 0.052  Accuracy: 81.73 %
[11,   800] loss: 0.044  Accuracy: 81.80 %
[11,  1000] loss: 0.045  Accuracy: 81.38 %
[11,  1200] loss: 0.041  Accuracy: 81.75 %
[11,  1400] loss: 0.051  Accuracy: 81.69 %
[12,   200] loss: 0.043  Accuracy: 82.13 %
[12,   400] loss: 0.026  Accuracy: 82.22 %
[12,   600] loss: 0.038  Accuracy: 81.66 %
[12,   800] loss: 0.030  Accuracy: 82.17 %
[12,  1000] loss: 0.040  Accuracy: 81.41 %
[12,  1200] loss: 0.036  Accuracy: 82.57 %
[12,  1400] loss: 0.040  Accuracy: 81.92 %
[13,   200] loss: 0.028  Accuracy: 82.66 %
[13,   400] loss: 0.028  Accuracy: 83.11 %
[13,   600] loss: 0.028  Accuracy: 81.71 %
[13,   800] loss: 0.023  Accuracy: 83.15 %
[13,  1000] loss: 0.018  Accuracy: 82.23 %
[13,  1200] loss: 0.025  Accuracy: 82.45 %
[13,  1400] loss: 0.030  Accuracy: 82.09 %
[14,   200] loss: 0.019  Accuracy: 82.08 %
[14,   400] loss: 0.029  Accuracy: 81.89 %
[14,   600] loss: 0.029  Accuracy: 82.36 %
[14,   800] loss: 0.019  Accuracy: 82.19 %
[14,  1000] loss: 0.020  Accuracy: 81.79 %
[14,  1200] loss: 0.028  Accuracy: 81.67 %
[14,  1400] loss: 0.037  Accuracy: 81.56 %
[15,   200] loss: 0.029  Accuracy: 82.03 %
[15,   400] loss: 0.024  Accuracy: 82.66 %
[15,   600] loss: 0.024  Accuracy: 82.21 %
[15,   800] loss: 0.022  Accuracy: 81.62 %
[15,  1000] loss: 0.024  Accuracy: 82.61 %
[15,  1200] loss: 0.028  Accuracy: 82.36 %
[15,  1400] loss: 0.032  Accuracy: 82.21 %
[16,   200] loss: 0.018  Accuracy: 82.14 %
[16,   400] loss: 0.013  Accuracy: 82.07 %
[16,   600] loss: 0.016  Accuracy: 82.62 %
[16,   800] loss: 0.014  Accuracy: 82.77 %
[16,  1000] loss: 0.017  Accuracy: 82.30 %
[16,  1200] loss: 0.031  Accuracy: 82.07 %
[16,  1400] loss: 0.021  Accuracy: 82.14 %
[17,   200] loss: 0.021  Accuracy: 82.37 %
[17,   400] loss: 0.019  Accuracy: 81.47 %
[17,   600] loss: 0.016  Accuracy: 82.76 %
[17,   800] loss: 0.014  Accuracy: 82.85 %
[17,  1000] loss: 0.012  Accuracy: 82.11 %
[17,  1200] loss: 0.021  Accuracy: 82.27 %
[17,  1400] loss: 0.025  Accuracy: 81.77 %
[18,   200] loss: 0.017  Accuracy: 82.24 %
[18,   400] loss: 0.015  Accuracy: 82.22 %
[18,   600] loss: 0.010  Accuracy: 82.42 %
[18,   800] loss: 0.011  Accuracy: 83.26 %
[18,  1000] loss: 0.014  Accuracy: 82.56 %
[18,  1200] loss: 0.020  Accuracy: 82.53 %
[18,  1400] loss: 0.025  Accuracy: 82.08 %
[19,   200] loss: 0.017  Accuracy: 82.10 %
[19,   400] loss: 0.014  Accuracy: 82.57 %
[19,   600] loss: 0.012  Accuracy: 82.03 %
[19,   800] loss: 0.014  Accuracy: 82.27 %
[19,  1000] loss: 0.010  Accuracy: 82.89 %
[19,  1200] loss: 0.006  Accuracy: 82.79 %
[19,  1400] loss: 0.010  Accuracy: 82.54 %
[20,   200] loss: 0.006  Accuracy: 83.22 %
[20,   400] loss: 0.005  Accuracy: 83.32 %
[20,   600] loss: 0.010  Accuracy: 82.79 %
[20,   800] loss: 0.008  Accuracy: 82.95 %
[20,  1000] loss: 0.007  Accuracy: 83.04 %
[20,  1200] loss: 0.017  Accuracy: 82.34 %
[20,  1400] loss: 0.022  Accuracy: 81.85 %
Finished Training
Accuracy: 82.37 %
GroundTruth:    cat  ship  ship plane
Predicted:    cat  ship  ship plane
Accuracy of plane : 79 %
Accuracy of   car : 88 %
Accuracy of  bird : 75 %
Accuracy of   cat : 65 %
Accuracy of  deer : 79 %
Accuracy of   dog : 79 %
Accuracy of  frog : 81 %
Accuracy of horse : 84 %
Accuracy of  ship : 88 %
Accuracy of truck : 91 %
elapsed time: ...
(keras-gpu) C:\Users\user\pytorch\cifar10>python pytorch_cifar10_.py
Files already downloaded and verified
Files already downloaded and verified
cuda:0
----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
            Conv2d-1           [-1, 64, 32, 32]           1,792
       BatchNorm2d-2           [-1, 64, 32, 32]             128
              ReLU-3           [-1, 64, 32, 32]               0
            Conv2d-4           [-1, 64, 32, 32]          36,928
       BatchNorm2d-5           [-1, 64, 32, 32]             128
              ReLU-6           [-1, 64, 32, 32]               0
         MaxPool2d-7           [-1, 64, 16, 16]               0
            Conv2d-8          [-1, 128, 16, 16]          73,856
       BatchNorm2d-9          [-1, 128, 16, 16]             256
             ReLU-10          [-1, 128, 16, 16]               0
           Conv2d-11          [-1, 128, 16, 16]         147,584
      BatchNorm2d-12          [-1, 128, 16, 16]             256
             ReLU-13          [-1, 128, 16, 16]               0
        MaxPool2d-14            [-1, 128, 8, 8]               0
           Conv2d-15            [-1, 256, 8, 8]         295,168
      BatchNorm2d-16            [-1, 256, 8, 8]             512
             ReLU-17            [-1, 256, 8, 8]               0
           Conv2d-18            [-1, 256, 8, 8]         590,080
      BatchNorm2d-19            [-1, 256, 8, 8]             512
             ReLU-20            [-1, 256, 8, 8]               0
           Conv2d-21            [-1, 256, 8, 8]         590,080
      BatchNorm2d-22            [-1, 256, 8, 8]             512
             ReLU-23            [-1, 256, 8, 8]               0
        MaxPool2d-24            [-1, 256, 4, 4]               0
           Conv2d-25            [-1, 512, 4, 4]       1,180,160
      BatchNorm2d-26            [-1, 512, 4, 4]           1,024
             ReLU-27            [-1, 512, 4, 4]               0
           Conv2d-28            [-1, 512, 4, 4]       2,359,808
      BatchNorm2d-29            [-1, 512, 4, 4]           1,024
             ReLU-30            [-1, 512, 4, 4]               0
           Conv2d-31            [-1, 512, 4, 4]       2,359,808
      BatchNorm2d-32            [-1, 512, 4, 4]           1,024
             ReLU-33            [-1, 512, 4, 4]               0
        MaxPool2d-34            [-1, 512, 2, 2]               0
           Conv2d-35            [-1, 512, 2, 2]       2,359,808
      BatchNorm2d-36            [-1, 512, 2, 2]           1,024
             ReLU-37            [-1, 512, 2, 2]               0
           Conv2d-38            [-1, 512, 2, 2]       2,359,808
      BatchNorm2d-39            [-1, 512, 2, 2]           1,024
             ReLU-40            [-1, 512, 2, 2]               0
           Conv2d-41            [-1, 512, 2, 2]       2,359,808
      BatchNorm2d-42            [-1, 512, 2, 2]           1,024
             ReLU-43            [-1, 512, 2, 2]               0
        MaxPool2d-44            [-1, 512, 1, 1]               0
           Linear-45                   [-1, 10]           5,130
================================================================
Total params: 14,728,266
Trainable params: 14,728,266
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.01
Forward/backward pass size (MB): 6.57
Params size (MB): 56.18
Estimated Total Size (MB): 62.76
----------------------------------------------------------------
[1,   200] loss: 1.799  Accuracy: 40.17 %
[1,   400] loss: 1.469  Accuracy: 48.53 %
[1,   600] loss: 1.295  Accuracy: 58.68 %
[1,   800] loss: 1.183  Accuracy: 59.18 %
[1,  1000] loss: 1.091  Accuracy: 63.12 %
[1,  1200] loss: 1.016  Accuracy: 67.31 %
[1,  1400] loss: 0.943  Accuracy: 67.08 %
[2,   200] loss: 0.774  Accuracy: 69.65 %
[2,   400] loss: 0.773  Accuracy: 72.26 %
[2,   600] loss: 0.739  Accuracy: 72.27 %
[2,   800] loss: 0.742  Accuracy: 73.00 %
[2,  1000] loss: 0.716  Accuracy: 73.47 %
[2,  1200] loss: 0.730  Accuracy: 75.37 %
[2,  1400] loss: 0.686  Accuracy: 75.08 %
[3,   200] loss: 0.530  Accuracy: 75.96 %
[3,   400] loss: 0.532  Accuracy: 76.04 %
[3,   600] loss: 0.557  Accuracy: 76.72 %
[3,   800] loss: 0.540  Accuracy: 77.04 %
[3,  1000] loss: 0.560  Accuracy: 76.86 %
[3,  1200] loss: 0.541  Accuracy: 78.71 %
[3,  1400] loss: 0.534  Accuracy: 77.87 %
[4,   200] loss: 0.367  Accuracy: 78.03 %
[4,   400] loss: 0.385  Accuracy: 78.14 %
[4,   600] loss: 0.399  Accuracy: 77.48 %
[4,   800] loss: 0.421  Accuracy: 80.07 %
[4,  1000] loss: 0.423  Accuracy: 79.78 %
[4,  1200] loss: 0.419  Accuracy: 77.99 %
[4,  1400] loss: 0.435  Accuracy: 77.94 %
[5,   200] loss: 0.251  Accuracy: 79.96 %
[5,   400] loss: 0.263  Accuracy: 80.21 %
[5,   600] loss: 0.305  Accuracy: 79.52 %
[5,   800] loss: 0.325  Accuracy: 79.28 %
[5,  1000] loss: 0.328  Accuracy: 79.60 %
[5,  1200] loss: 0.310  Accuracy: 80.36 %
[5,  1400] loss: 0.321  Accuracy: 79.35 %
[6,   200] loss: 0.197  Accuracy: 80.52 %
[6,   400] loss: 0.175  Accuracy: 81.41 %
[6,   600] loss: 0.205  Accuracy: 79.99 %
[6,   800] loss: 0.225  Accuracy: 80.46 %
[6,  1000] loss: 0.226  Accuracy: 81.30 %
[6,  1200] loss: 0.268  Accuracy: 80.72 %
[6,  1400] loss: 0.260  Accuracy: 80.55 %
[7,   200] loss: 0.137  Accuracy: 81.70 %
[7,   400] loss: 0.154  Accuracy: 80.79 %
[7,   600] loss: 0.159  Accuracy: 81.09 %
[7,   800] loss: 0.163  Accuracy: 80.51 %
[7,  1000] loss: 0.181  Accuracy: 81.27 %
[7,  1200] loss: 0.188  Accuracy: 81.19 %
[7,  1400] loss: 0.175  Accuracy: 81.94 %
[8,   200] loss: 0.097  Accuracy: 81.12 %
[8,   400] loss: 0.127  Accuracy: 80.91 %
[8,   600] loss: 0.122  Accuracy: 81.28 %
[8,   800] loss: 0.136  Accuracy: 81.21 %
[8,  1000] loss: 0.128  Accuracy: 81.71 %
[8,  1200] loss: 0.144  Accuracy: 81.51 %
[8,  1400] loss: 0.152  Accuracy: 81.56 %
[9,   200] loss: 0.079  Accuracy: 82.23 %
[9,   400] loss: 0.082  Accuracy: 81.96 %
[9,   600] loss: 0.082  Accuracy: 81.99 %
[9,   800] loss: 0.088  Accuracy: 81.79 %
[9,  1000] loss: 0.095  Accuracy: 81.77 %
[9,  1200] loss: 0.105  Accuracy: 82.10 %
[9,  1400] loss: 0.119  Accuracy: 82.12 %
[10,   200] loss: 0.068  Accuracy: 82.85 %
[10,   400] loss: 0.054  Accuracy: 82.08 %
[10,   600] loss: 0.075  Accuracy: 81.81 %
[10,   800] loss: 0.077  Accuracy: 81.26 %
[10,  1000] loss: 0.088  Accuracy: 81.52 %
[10,  1200] loss: 0.092  Accuracy: 82.67 %
[10,  1400] loss: 0.086  Accuracy: 81.33 %
[11,   200] loss: 0.058  Accuracy: 82.81 %
[11,   400] loss: 0.054  Accuracy: 82.56 %
[11,   600] loss: 0.061  Accuracy: 82.24 %
[11,   800] loss: 0.076  Accuracy: 82.50 %
[11,  1000] loss: 0.073  Accuracy: 82.36 %
[11,  1200] loss: 0.058  Accuracy: 82.78 %
[11,  1400] loss: 0.081  Accuracy: 81.89 %
[12,   200] loss: 0.052  Accuracy: 82.33 %
[12,   400] loss: 0.034  Accuracy: 82.74 %
[12,   600] loss: 0.039  Accuracy: 82.18 %
[12,   800] loss: 0.049  Accuracy: 82.51 %
[12,  1000] loss: 0.054  Accuracy: 82.29 %
[12,  1200] loss: 0.051  Accuracy: 83.02 %
[12,  1400] loss: 0.058  Accuracy: 82.70 %
[13,   200] loss: 0.053  Accuracy: 82.71 %
[13,   400] loss: 0.060  Accuracy: 82.67 %
[13,   600] loss: 0.043  Accuracy: 82.62 %
[13,   800] loss: 0.049  Accuracy: 82.43 %
[13,  1000] loss: 0.051  Accuracy: 82.64 %
[13,  1200] loss: 0.064  Accuracy: 82.29 %
[13,  1400] loss: 0.060  Accuracy: 82.71 %
[14,   200] loss: 0.039  Accuracy: 82.99 %
[14,   400] loss: 0.031  Accuracy: 82.65 %
[14,   600] loss: 0.029  Accuracy: 83.03 %
[14,   800] loss: 0.029  Accuracy: 83.56 %
[14,  1000] loss: 0.036  Accuracy: 83.31 %
[14,  1200] loss: 0.035  Accuracy: 83.16 %
[14,  1400] loss: 0.050  Accuracy: 81.60 %
[15,   200] loss: 0.029  Accuracy: 83.00 %
[15,   400] loss: 0.020  Accuracy: 83.58 %
[15,   600] loss: 0.021  Accuracy: 83.13 %
[15,   800] loss: 0.030  Accuracy: 82.34 %
[15,  1000] loss: 0.030  Accuracy: 82.31 %
[15,  1200] loss: 0.028  Accuracy: 82.54 %
[15,  1400] loss: 0.038  Accuracy: 82.27 %
[16,   200] loss: 0.027  Accuracy: 82.22 %
[16,   400] loss: 0.027  Accuracy: 82.48 %
[16,   600] loss: 0.029  Accuracy: 82.61 %
[16,   800] loss: 0.034  Accuracy: 82.41 %
[16,  1000] loss: 0.043  Accuracy: 82.86 %
[16,  1200] loss: 0.034  Accuracy: 83.38 %
[16,  1400] loss: 0.035  Accuracy: 83.11 %
[17,   200] loss: 0.022  Accuracy: 83.67 %
[17,   400] loss: 0.024  Accuracy: 82.72 %
[17,   600] loss: 0.023  Accuracy: 82.82 %
[17,   800] loss: 0.016  Accuracy: 83.68 %
[17,  1000] loss: 0.019  Accuracy: 83.34 %
[17,  1200] loss: 0.025  Accuracy: 82.77 %
[17,  1400] loss: 0.034  Accuracy: 83.47 %
[18,   200] loss: 0.021  Accuracy: 83.69 %
[18,   400] loss: 0.020  Accuracy: 83.29 %
[18,   600] loss: 0.014  Accuracy: 83.81 %
[18,   800] loss: 0.020  Accuracy: 83.58 %
[18,  1000] loss: 0.028  Accuracy: 82.57 %
[18,  1200] loss: 0.029  Accuracy: 82.51 %
[18,  1400] loss: 0.030  Accuracy: 82.37 %
[19,   200] loss: 0.022  Accuracy: 83.79 %
[19,   400] loss: 0.012  Accuracy: 83.80 %
[19,   600] loss: 0.012  Accuracy: 83.77 %
[19,   800] loss: 0.017  Accuracy: 83.51 %
[19,  1000] loss: 0.016  Accuracy: 83.54 %
[19,  1200] loss: 0.011  Accuracy: 83.88 %
[19,  1400] loss: 0.011  Accuracy: 83.56 %
[20,   200] loss: 0.018  Accuracy: 82.86 %
[20,   400] loss: 0.023  Accuracy: 83.04 %
[20,   600] loss: 0.026  Accuracy: 83.26 %
[20,   800] loss: 0.020  Accuracy: 82.70 %
[20,  1000] loss: 0.016  Accuracy: 83.13 %
[20,  1200] loss: 0.021  Accuracy: 82.92 %
[20,  1400] loss: 0.029  Accuracy: 82.57 %
Finished Training
Accuracy: 83.03 %
GroundTruth:    cat  ship  ship plane
Predicted:    cat  ship  ship plane
Accuracy of plane : 87 %
Accuracy of   car : 93 %
Accuracy of  bird : 76 %
Accuracy of   cat : 59 %
Accuracy of  deer : 80 %
Accuracy of   dog : 77 %
Accuracy of  frog : 85 %
Accuracy of horse : 85 %
Accuracy of  ship : 92 %
Accuracy of truck : 93 %
elapsed time: 2412.977 [sec]

Recommended Posts

[Introduction à Pytorch] J'ai essayé de catégoriser Cifar10 avec VGG16 ♬
[Introduction à Pytorch] J'ai joué avec sinGAN ♬
J'ai essayé d'implémenter CVAE avec PyTorch
J'ai essayé d'implémenter la lecture de Dataset avec PyTorch
J'ai essayé de déplacer Faster R-CNN rapidement avec pytorch
J'ai essayé d'implémenter et d'apprendre DCGAN avec PyTorch
J'ai essayé d'implémenter SSD avec PyTorch maintenant (Dataset)
[Introduction à AWS] J'ai essayé de jouer avec la conversion voix-texte ♪
[Détails (?)] Introduction au pytorch ~ CNN de CIFAR10 ~
J'ai essayé d'expliquer l'ensemble de données de Pytorch
J'ai essayé d'implémenter DeepPose avec PyTorch
J'ai essayé de classer MNIST par GNN (avec PyTorch géométrique)
J'ai essayé d'implémenter SSD avec PyTorch maintenant (édition du modèle)
J'ai essayé d'implémenter Autoencoder avec TensorFlow
J'ai essayé de commencer avec Hy
J'ai essayé d'implémenter la classification des phrases par Self Attention avec PyTorch
J'ai essayé d'implémenter DeepPose avec PyTorch PartⅡ
J'ai essayé de résoudre TSP avec QAOA
J'ai essayé l'analyse de données IRMf avec python (Introduction au décodage des informations cérébrales)
J'ai implémenté le modèle VGG16 avec Keras et essayé d'identifier CIFAR10
J'ai essayé de prédire l'année prochaine avec l'IA
J'ai essayé d'utiliser lightGBM, xg boost avec Boruta
J'ai essayé la reconnaissance d'image de CIFAR-10 avec Keras-Learning-
J'ai essayé d'apprendre le fonctionnement logique avec TF Learn
J'ai essayé de déplacer GAN (mnist) avec keras
J'ai essayé la reconnaissance d'image de CIFAR-10 avec la reconnaissance d'image Keras-
J'ai essayé de sauvegarder les données avec discorde
J'ai essayé de détecter rapidement un mouvement avec OpenCV
J'ai essayé d'intégrer Keras dans TFv1.1
J'ai essayé d'obtenir des données CloudWatch avec Python
J'ai essayé de sortir LLVM IR avec Python
J'ai essayé de détecter un objet avec M2Det!
J'ai essayé d'automatiser la fabrication des sushis avec python
J'ai essayé de prédire la survie du Titanic avec PyCaret
J'ai essayé d'utiliser Linux avec Discord Bot
J'ai essayé d'étudier DP avec séquence de Fibonacci
J'ai essayé de démarrer Jupyter avec toutes les lumières d'Amazon
J'ai essayé de juger Tundele avec Naive Bays
[Introduction au PID] J'ai essayé de contrôler et de jouer ♬
Introduction à Lightning Pytorch
J'ai essayé de déboguer.
[Introduction à AWS] J'ai essayé de porter une application de conversation et de jouer avec text2speech @ AWS ♪
J'ai essayé d'implémenter Cifar10 avec la bibliothèque SONY Deep Learning NNabla [Nippon Hurray]
J'ai essayé de comparer la précision de la classification des phrases BERT japonaises et japonaises Distil BERT avec PyTorch et introduction de la technique d'amélioration de la précision BERT
J'ai essayé d'entraîner la fonction péché avec chainer
J'ai essayé de déplacer l'apprentissage automatique (détection d'objet) avec TouchDesigner
J'ai essayé d'extraire des fonctionnalités avec SIFT d'OpenCV
J'ai essayé d'implémenter Mine Sweeper sur un terminal avec python
J'ai essayé de démarrer avec le script python de blender_Part 01
J'ai essayé de toucher un fichier CSV avec Python
J'ai essayé de résoudre Soma Cube avec python
J'ai essayé de lire et d'enregistrer automatiquement avec VOICEROID2
J'ai essayé de démarrer avec le script python de blender_Partie 02
J'ai essayé de générer ObjectId (clé primaire) avec pymongo
J'ai essayé d'implémenter le perceptron artificiel avec python