[Attention aux spoilers] Allez prédire une mariée divisée en cinq parts égales avec PyTorch

Je ferai de mon mieux pour compter sur les cinq épouses égales (vrai visage)

Apprenez les techniques du pytorch et du Deep Learning tout en devinant la mariée en cinq parties égales

Le code pytorch utilisé cette fois est essentiellement ici

https://github.com/yoyoyo-yo/DeepLearningMugenKnock

** Cela peut être un spoiler pour certains téléspectateurs, donc si vous ne l'aimez pas, fermez la fenêtre immédiatement **






















Récemment, l'auteur a déclaré que la bande dessinée se terminerait en 14 volumes, et il semblait que les progrès étaient étonnants en termes d'histoire.

Je suis en mai, donc je crois que c'est en mai. Nous le ferons en prouvant que c'est le mois de mai avec Deep Learning et en espérant que l'auteur le verra et ce sera fin mai à partir de maintenant.

couler

  1. Collecte des ensembles de données
  2. Détection + reconnaissance par YOLO-v3 (Keras)
  3. Collecte de données pour reconnaissance
  4. Reconnaissance par CNN
  5. Visualisation avec GradCAM

1. Collecte des ensembles de données

J'ai fait quelque chose de similaire au passé. Utilisez l'apprentissage en profondeur pour prédire la future épouse d'une mariée de cinq quarts

Ici, YOLO-v3 (keras, https://github.com/qqwweee/keras-yolo3) a été utilisé pour la détection et la reconnaissance.

Pour les données d'apprentissage, j'ai ouvert le premier volume de la bande dessinée sur Kindle et j'ai répété le squeeze → annotation (mourant)

2. Détection + reconnaissance par YOLO-v3 (Keras)

Dans YOLO-v3, qui gère la détection et la reconnaissance en même temps, le résultat est May.

3. Collecte de données pour reconnaissance

Cette fois, découpez davantage la partie du visage et amenez-la dans la direction à reconnaître par CNN.

Pour cela, il est nécessaire de collecter des images de visage, j'ai donc découpé la partie du visage avec YOLO-v3. Après cela, j'ai nettoyé les données visuellement et rassemblé

Nombre d'images
Ichihana 273
Nino 447
Miku 289
Yotsuba 397
Peut 443

Il y en a beaucoup en mai et Nino, mais ensuite il y a beaucoup de Yotsuba.

L'image capturée ressemble à ceci

Ichihana Nino Miku Yotsuba Peut

Avec cela, 250 images sont utilisées comme données d'entraînement et 20 images sont utilisées comme données de test.

4. Reconnaissance par CNN

Il a été réduit à 5 classes par Res101.

Le code ressemble à ceci. Pour utiliser ce code, créez la structure de répertoires suivante

Gotobun --- Res101.py
         |- Train -+- Ichika --- ***.jpg
                   +- Nino --- ***.jpg
                   +- Miku --- ***.jpg
                   +- Yotsuba --- ***.jpg
                   +- Itsuki --- ***.jpg
         |- Test --- ...

Res101.py


import torch
import torch.nn.functional as F
import argparse
import cv2
import numpy as np
from glob import glob
import copy
import matplotlib.pyplot as plt
import seaborn as sns

CLS = ['Ichika', 'Nino', 'Miku', 'Yotsuba', 'Itsuki']
num_classes = len(CLS)
img_height, img_width = 128, 128
channel = 3

# GPU
GPU = True
device = torch.device("cuda" if GPU and torch.cuda.is_available() else "cpu")

# random seed
torch.manual_seed(0)
        
class ResBlock(torch.nn.Module):
    def __init__(self, in_f, f_1, out_f, stride=1):
        super(ResBlock, self).__init__()

        self.stride = stride
        self.fit_dim = False

        self.block = torch.nn.Sequential(
            torch.nn.Conv2d(in_f, f_1, kernel_size=1, padding=0, stride=stride),
            torch.nn.BatchNorm2d(f_1),
            torch.nn.ReLU(),
            torch.nn.Conv2d(f_1, f_1, kernel_size=3, padding=1, stride=1),
            torch.nn.BatchNorm2d(f_1),
            torch.nn.ReLU(),
            torch.nn.Conv2d(f_1, out_f, kernel_size=1, padding=0, stride=1),
            torch.nn.BatchNorm2d(out_f),
            torch.nn.ReLU()
        )

        if in_f != out_f:
            self.fit_conv = torch.nn.Conv2d(in_f, out_f, kernel_size=1, padding=0, stride=1)
            self.fit_bn = torch.nn.BatchNorm2d(out_f)
            self.fit_dim = True
            
            
        
    def forward(self, x):
        res_x = self.block(x)
        
        if self.fit_dim:
            x = self.fit_conv(x)
            x = self.fit_bn(x)
            x = F.relu(x)
        
        if self.stride == 2:
            x = F.max_pool2d(x, 2, stride=2)
            
        x = torch.add(res_x, x)
        x = F.relu(x)
        return x

        
class Res101(torch.nn.Module):
    def __init__(self):
        super(Res101, self).__init__()

        self.conv1 = torch.nn.Conv2d(channel, 64, kernel_size=7, padding=3, stride=2)
        self.bn1 = torch.nn.BatchNorm2d(64)
        
        self.resblock2_1 = ResBlock(64, 64, 256)
        self.resblock2_2 = ResBlock(256, 64, 256)
        self.resblock2_3 = ResBlock(256, 64, 256)

        self.resblock3_1 = ResBlock(256, 128, 512, stride=2)
        self.resblock3_2 = ResBlock(512, 128, 512)
        self.resblock3_3 = ResBlock(512, 128, 512)
        self.resblock3_4 = ResBlock(512, 128, 512)

        self.resblock4_1 = ResBlock(512, 256, 1024, stride=2)
        block = []
        for _ in range(22):
            block.append(ResBlock(1024, 256, 1024))
        self.resblock4s = torch.nn.Sequential(*block)

        self.resblock5_1 = ResBlock(1024, 512, 2048, stride=2)
        self.resblock5_2 = ResBlock(2048, 512, 2048)
        self.resblock5_3 = ResBlock(2048, 512, 2048)
        
        self.linear = torch.nn.Linear(2048, num_classes)
        
        
    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = F.relu(x)
        x = F.max_pool2d(x, 3, padding=1, stride=2)

        x = self.resblock2_1(x)
        x = self.resblock2_2(x)
        x = self.resblock2_3(x)

        x = self.resblock3_1(x)
        x = self.resblock3_2(x)
        x = self.resblock3_3(x)
        x = self.resblock3_4(x)

        x = self.resblock4_1(x)
        x = self.resblock4s(x)

        x = self.resblock5_1(x)
        x = self.resblock5_2(x)
        x = self.resblock5_3(x)

        x = F.avg_pool2d(x, [img_height//32, img_width//32], padding=0, stride=1)
        x = x.view(list(x.size())[0], -1)
        x = self.linear(x)
        x = F.softmax(x, dim=1)
        
        return x

    


# get train data
def data_load(path, hf=False, vf=False, rot=False):
    xs = []
    ts = []
    paths = []
    
    for dir_path in glob(path + '/*'):
        for path in glob(dir_path + '/*'):
            x = cv2.imread(path)
            x = cv2.resize(x, (img_width, img_height)).astype(np.float32)
            x /= 255.
            x = x[..., ::-1]
            xs.append(x)

            for i, cls in enumerate(CLS):
                if cls in path:
                    t = i
            
            ts.append(t)

            paths.append(path)

            if hf:
                xs.append(x[:, ::-1])
                ts.append(t)
                paths.append(path)

            if vf:
                xs.append(x[::-1])
                ts.append(t)
                paths.append(path)

            if hf and vf:
                xs.append(x[::-1, ::-1])
                ts.append(t)
                paths.append(path)

            if rot != False:
                angle = rot
                scale = 1

                # show
                a_num = 360 // rot
                w_num = np.ceil(np.sqrt(a_num))
                h_num = np.ceil(a_num / w_num)
                count = 1
                #plt.subplot(h_num, w_num, count)
                #plt.axis('off')
                #plt.imshow(x)
                #plt.title("angle=0")
                
                while angle < 360:
                    _h, _w, _c = x.shape
                    max_side = max(_h, _w)
                    tmp = np.zeros((max_side, max_side, _c))
                    tx = int((max_side - _w) / 2)
                    ty = int((max_side - _h) / 2)
                    tmp[ty: ty+_h, tx: tx+_w] = x.copy()
                    M = cv2.getRotationMatrix2D((max_side/2, max_side/2), angle, scale)
                    _x = cv2.warpAffine(tmp, M, (max_side, max_side))
                    _x = _x[tx:tx+_w, ty:ty+_h]
                    xs.append(_x)
                    ts.append(t)
                    paths.append(path)

                    # show
                    #count += 1
                    #plt.subplot(h_num, w_num, count)
                    #plt.imshow(_x)
                    #plt.axis('off')
                    #plt.title("angle={}".format(angle))

                    angle += rot
                #plt.show()


    xs = np.array(xs, dtype=np.float32)
    ts = np.array(ts, dtype=np.int)
    
    xs = xs.transpose(0,3,1,2)

    return xs, ts, paths



# train
def train():
    # model
    model = Res101().to(device)
    opt = torch.optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
    model.train()

    xs, ts, paths = data_load('Train/', hf=True, vf=True, rot=10)

    # training
    mb = 64
    mbi = 0
    train_ind = np.arange(len(xs))
    np.random.seed(0)
    np.random.shuffle(train_ind)

    loss_fn = torch.nn.CrossEntropyLoss()
    
    for i in range(10000):
        if mbi + mb > len(xs):
            mb_ind = copy.copy(train_ind)[mbi:]
            np.random.shuffle(train_ind)
            mb_ind = np.hstack((mb_ind, train_ind[:(mb-(len(xs)-mbi))]))
        else:
            mb_ind = train_ind[mbi: mbi+mb]
            mbi += mb

        x = torch.tensor(xs[mb_ind], dtype=torch.float).to(device)
        t = torch.tensor(ts[mb_ind], dtype=torch.long).to(device)

        opt.zero_grad()
        y = model(x)
        #y = F.log_softmax(y, dim=1)
        loss = loss_fn(y, t)
        
        loss.backward()
        opt.step()
    
        pred = y.argmax(dim=1, keepdim=True)
        acc = pred.eq(t.view_as(pred)).sum().item() / mb
        
        if (i + 1) % 10 == 0:
            print("iter >>", i+1, ', loss >>', loss.item(), ', accuracy >>', acc)

    torch.save(model.state_dict(), 'Res101.pt')

    
# test
def test():
    model = Res101().to(device)
    model.eval()
    model.load_state_dict(torch.load('Res101.pt', map_location=torch.device(device)))

    xs, ts, paths = data_load('Test/')

    Matrix = np.zeros([5, 5])

    for i in range(len(paths)):
        x = xs[i]
        t = ts[i]
        path = paths[i]
        
        x = np.expand_dims(x, axis=0)
        x = torch.tensor(x, dtype=torch.float).to(device)
        
        pred = model(x)
        pred = pred.detach().cpu().numpy()[0]

        Matrix[t, pred.argmax()] += 1
    
        print("in {}, predict >> {}, probabilities >> {}".format(path, CLS[pred.argmax()], pred))

    print(Matrix)
    #plt.imshow(Matrix)
    sns.heatmap(Matrix, square=True, annot=True)
    plt.show()

def arg_parse():
    parser = argparse.ArgumentParser(description='CNN implemented with Keras')
    parser.add_argument('--train', dest='train', action='store_true')
    parser.add_argument('--test', dest='test', action='store_true')
    args = parser.parse_args()
    return args


# main
if __name__ == '__main__':
    args = arg_parse()

    if args.train:
        train()
    if args.test:
        test()

    if not (args.train or args.test):
        print("please select train or test flag")
        print("train: python main.py --train")
        print("test:  python main.py --test")
        print("both:  python main.py --train --test")

Honnêtement, le nombre d'apprentissages est devenu ennuyeux en cours de route, donc ce n'est peut-être pas optimal.

Résultats de la reconnaissance CNN

Si vous faites un tableau avec une réponse correcte sur l'axe vertical et une prédiction sur l'axe horizontal, cela ressemble à ceci, il s'agit de (Précision 70%)

Prédiction d'image de mariée

Ichihana Nino Miku Yotsuba Peut
15% 40% 15% 15% 15%

Hmm? Nino? ??

Ichihana Nino Miku Yotsuba Peut
15% 40% 15% 15% 15%

Grad-Cam

Utilisez Grad-CAM pour visualiser les décisions CNN.

Le code est

import torch
import torch.nn.functional as F
import argparse
import cv2
import numpy as np
from glob import glob
import copy
import matplotlib.pyplot as plt
import matplotlib.cm as cm
from collections import OrderedDict

Class_label = ['Ichika', 'Nino', 'Miku', 'Yotsuba', 'Itsuki']
Class_N = len(Class_label)
img_height, img_width = 128, 128
channel = 3

# GPU
GPU = False
device = torch.device("cuda" if GPU and torch.cuda.is_available() else "cpu")

# random seed
torch.manual_seed(0)


class ResBlock(torch.nn.Module):
    def __init__(self, in_f, f_1, out_f, stride=1):
        super(ResBlock, self).__init__()

        self.stride = stride
        self.fit_dim = False

        self.block = torch.nn.Sequential(
            torch.nn.Conv2d(in_f, f_1, kernel_size=1, padding=0, stride=stride),
            torch.nn.BatchNorm2d(f_1),
            torch.nn.ReLU(),
            torch.nn.Conv2d(f_1, f_1, kernel_size=3, padding=1, stride=1),
            torch.nn.BatchNorm2d(f_1),
            torch.nn.ReLU(),
            torch.nn.Conv2d(f_1, out_f, kernel_size=1, padding=0, stride=1),
            torch.nn.BatchNorm2d(out_f),
            torch.nn.ReLU()
        )

        if in_f != out_f:
            self.fit_conv = torch.nn.Conv2d(in_f, out_f, kernel_size=1, padding=0, stride=1)
            self.fit_bn = torch.nn.BatchNorm2d(out_f)
            self.fit_dim = True
            
            
        
    def forward(self, x):
        res_x = self.block(x)
        
        if self.fit_dim:
            x = self.fit_conv(x)
            x = self.fit_bn(x)
            x = F.relu(x)
        
        if self.stride == 2:
            x = F.max_pool2d(x, 2, stride=2)
            
        x = torch.add(res_x, x)
        x = F.relu(x)
        return x

        
class Res101(torch.nn.Module):
    def __init__(self):
        super(Res101, self).__init__()

        self.conv1 = torch.nn.Conv2d(channel, 64, kernel_size=7, padding=3, stride=2)
        self.bn1 = torch.nn.BatchNorm2d(64)
        
        self.resblock2_1 = ResBlock(64, 64, 256)
        self.resblock2_2 = ResBlock(256, 64, 256)
        self.resblock2_3 = ResBlock(256, 64, 256)

        self.resblock3_1 = ResBlock(256, 128, 512, stride=2)
        self.resblock3_2 = ResBlock(512, 128, 512)
        self.resblock3_3 = ResBlock(512, 128, 512)
        self.resblock3_4 = ResBlock(512, 128, 512)

        self.resblock4_1 = ResBlock(512, 256, 1024, stride=2)
        block = []
        for _ in range(22):
            block.append(ResBlock(1024, 256, 1024))
        self.resblock4s = torch.nn.Sequential(*block)

        self.resblock5_1 = ResBlock(1024, 512, 2048, stride=2)
        self.resblock5_2 = ResBlock(2048, 512, 2048)
        self.resblock5_3 = ResBlock(2048, 512, 2048)
        
        self.linear = torch.nn.Linear(2048, Class_N)
        
        
    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = F.relu(x)
        x = F.max_pool2d(x, 3, padding=1, stride=2)

        x = self.resblock2_1(x)
        x = self.resblock2_2(x)
        x = self.resblock2_3(x)

        x = self.resblock3_1(x)
        x = self.resblock3_2(x)
        x = self.resblock3_3(x)
        x = self.resblock3_4(x)

        x = self.resblock4_1(x)
        x = self.resblock4s(x)

        x = self.resblock5_1(x)
        x = self.resblock5_2(x)
        x = self.resblock5_3(x)

        x = F.avg_pool2d(x, [img_height//32, img_width//32], padding=0, stride=1)
        x = x.view(list(x.size())[0], -1)
        x = self.linear(x)
        x = F.softmax(x, dim=1)
        
        return x



# get train data
def data_load(path, hf=False, vf=False, rot=False):
    xs = []
    ts = []
    paths = []
    
    for dir_path in glob(path + '/*'):
        for path in glob(dir_path + '/*'):
            x = cv2.imread(path)
            x = cv2.resize(x, (img_width, img_height)).astype(np.float32)
            x /= 255.
            x = x[..., ::-1]
            xs.append(x)

            t = -1
            for i, _Class_label in enumerate(Class_label):
                if _Class_label in path:
                    t = i
            
            ts.append(t)

            paths.append(path)

            if hf:
                xs.append(x[:, ::-1])
                ts.append(t)
                paths.append(path)

            if vf:
                xs.append(x[::-1])
                ts.append(t)
                paths.append(path)

            if hf and vf:
                xs.append(x[::-1, ::-1])
                ts.append(t)
                paths.append(path)

            if rot != False:
                angle = rot
                scale = 1

                # show
                a_num = 360 // rot
                w_num = np.ceil(np.sqrt(a_num))
                h_num = np.ceil(a_num / w_num)
                count = 1
                #plt.subplot(h_num, w_num, count)
                #plt.axis('off')
                #plt.imshow(x)
                #plt.title("angle=0")
                
                while angle < 360:
                    _h, _w, _c = x.shape
                    max_side = max(_h, _w)
                    tmp = np.zeros((max_side, max_side, _c))
                    tx = int((max_side - _w) / 2)
                    ty = int((max_side - _h) / 2)
                    tmp[ty: ty+_h, tx: tx+_w] = x.copy()
                    M = cv2.getRotationMatrix2D((max_side/2, max_side/2), angle, scale)
                    _x = cv2.warpAffine(tmp, M, (max_side, max_side))
                    _x = _x[tx:tx+_w, ty:ty+_h]
                    xs.append(_x)
                    ts.append(t)
                    paths.append(path)

                    # show
                    #count += 1
                    #plt.subplot(h_num, w_num, count)
                    #plt.imshow(_x)
                    #plt.axis('off')
                    #plt.title("angle={}".format(angle))

                    angle += rot
                #plt.show()


    xs = np.array(xs, dtype=np.float32)
    ts = np.array(ts, dtype=np.int)
    
    xs = xs.transpose(0,3,1,2)

    return xs, ts, paths



# train
def train():
    # model
    model = Res101().to(device)
    opt = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.9)
    model.train()

    xs, ts, paths = data_load('../Dataset/train/images/', hf=True, vf=True, rot=10)

    # training
    mb = 32
    mbi = 0
    train_ind = np.arange(len(xs))
    np.random.seed(0)
    np.random.shuffle(train_ind)

    loss_fn = torch.nn.NLLLoss()
    
    for i in range(500):
        if mbi + mb > len(xs):
            mb_ind = copy.copy(train_ind)[mbi:]
            np.random.shuffle(train_ind)
            mb_ind = np.hstack((mb_ind, train_ind[:(mb-(len(xs)-mbi))]))
        else:
            mb_ind = train_ind[mbi: mbi+mb]
            mbi += mb

        x = torch.tensor(xs[mb_ind], dtype=torch.float).to(device)
        t = torch.tensor(ts[mb_ind], dtype=torch.long).to(device)

        opt.zero_grad()
        y = model(x)
        #y = F.log_softmax(y, dim=1)
        loss = loss_fn(torch.log(y), t)
        
        loss.backward()
        opt.step()
    
        pred = y.argmax(dim=1, keepdim=True)
        acc = pred.eq(t.view_as(pred)).sum().item() / mb

        if (i + 1) % 50 == 0:
            print("iter >>", i+1, ', loss >>', loss.item(), ', accuracy >>', acc)

    torch.save(model.state_dict(), 'Res101.pt')

# test
def test(target_layer_name):
    model = Res101().to(device)
    model.eval()
    model.load_state_dict(torch.load('Res101.pt', map_location=torch.device(device)))

    xs, ts, paths = data_load('Test/')

    target_layer = None

    for name, module in model.named_modules():
      if target_layer_name == name:
        print('target:', name)
        target_layer = module

    if target_layer is None:
      for name, module in model.named_modules():
        print(name)
      raise Exception('invalid target layer name >>', target_layer_name)

    if type(target_layer) is torch.nn.Sequential:
      target_layer = target_layer[-1]

    print(target_layer)

    fmap_pool = OrderedDict()
    grad_pool = OrderedDict()

    def forward_hook(key):
        def forward_hook_(module, input, output):
            # Save featuremaps
            fmap_pool[key] = output.detach()

        return forward_hook_

    def backward_hook(key):
        def backward_hook_(module, grad_in, grad_out):
            # Save the gradients correspond to the featuremaps
            grad_pool[key] = grad_out[0].detach()

        return backward_hook_

    # If any candidates are not specified, the hook is registered to all the layers.
    for name, module in model.named_modules():
            module.register_forward_hook(forward_hook(name))
            module.register_backward_hook(backward_hook(name))


    for i in range(len(paths)):
        _x = xs[i]
        t = ts[i]
        path = paths[i]
        
        x = np.expand_dims(_x, axis=0)
        x = torch.tensor(x, dtype=torch.float).to(device)
        
        # forward network
        logit = model(x)
        pred = F.softmax(logit, dim=1).detach().cpu().numpy()

        raw_image = (_x ).transpose(1, 2, 0)

        plt.subplot(1, Class_N + 1, 1)
        plt.imshow(raw_image)
        if t < -1:
            plt.title(Class_label[t])
        else:
            plt.title('?')
        plt.axis('off')

        for i, class_label in enumerate(Class_label):
            # set one-hot class activity
            class_index = torch.zeros(pred.shape).to(device)

            _index = Class_label.index(class_label)
            class_index[:, _index] = 1

            logit.backward(gradient=class_index, retain_graph=True)
            
            #target_layer_output = target_layer.forward(x)
            fmaps = fmap_pool[target_layer_name]
            grads = grad_pool[target_layer_name]
            weights = F.adaptive_avg_pool2d(grads, 1)

            gcam = torch.mul(fmaps, weights).sum(dim=1, keepdim=True)
            gcam = F.relu(gcam)

            gcam = F.interpolate(gcam, [img_height, img_width], mode="bilinear", align_corners=False)

            B, C, H, W = gcam.shape
            gcam = gcam.view(B, -1)
            gcam -= gcam.min(dim=1, keepdim=True)[0]
            gcam /= gcam.max(dim=1, keepdim=True)[0]
            gcam = gcam.view(B, C, H, W)

            gcam = gcam.cpu().numpy()[0, 0]
            cmap = cm.jet_r(gcam)[..., :3]
            gcam = (cmap.astype(np.float) + raw_image.astype(np.float)) / 2
        
            plt.subplot(1, Class_N + 1, i + 2)
            plt.imshow(gcam)
            plt.title('{}:{:.2f}'.format(class_label, pred[0, i]), fontsize=10)
            plt.axis('off')

        plt.show()

        print("in {}, predicted probabilities >> {}".format(path, pred))



def arg_parse():
    parser = argparse.ArgumentParser(description='CNN implemented with Keras')
    parser.add_argument('--train', dest='train', action='store_true')
    parser.add_argument('--test', dest='test', action='store_true')
    parser.add_argument('--target', dest='target_layer', default='conv3', type=str)
    args = parser.parse_args()
    return args

# main
if __name__ == '__main__':
    args = arg_parse()

    if args.train:
        train()
    if args.test:
        test(args.target_layer)

    if not (args.train or args.test):
        print("please select train or test flag")
        print("train: python main.py --train")
        print("test:  python main.py --test")
        print("both:  python main.py --train --test")

Apparemment, l'œil gauche est Nino ...

Si vous le recherchez avec Nino, vous pouvez voir le résultat qui réagit à vos yeux.

résultat

J'ai manqué de courant en chemin et je l'ai fait à peu près, mais ...

Nino?

Je crois que c'est mai

Recommended Posts

[Attention aux spoilers] Allez prédire une mariée divisée en cinq parts égales avec PyTorch
J'ai essayé de laisser AI juger la bonne épouse de la mariée qui est divisée en cinq parts égales
J'ai essayé de prédire les chevaux qui seront dans le top 3 avec LightGBM
Connectez-vous à un serveur distant avec SSH
Convertissez l'image au format .zip en PDF avec Python
Je t'ai écrit pour regarder le signal avec Go
Notez ce que vous voulez faire à l'avenir avec Razpai
Remarque sur le comportement par défaut de collate_fn dans PyTorch
Accédez au champ de structure C avec le nom réservé dans Go.
Je l'ai écrit en langage Go pour comprendre le principe SOLID
Je n'arrive pas à me connecter à la page d'administration avec Django 3