Reinforcement learning 18 Colaboratory + Acrobat + ChainerRL

It is assumed that reinforcement learning 17 has been completed. I've summarized it first to make it easier to change the parameters. It takes about 30 minutes to study 200 times. At this level, it was slow when using the GPU. CPU is recommended. If you study for a long time, you will get caught up in the 12-hour rule. It seems good to divide it into small pieces. If you want to subdivide, after learning 100 times, use it as a backup Like agent.save (save_point_num). If you want to start from the middle It should be like agent.load (last_save_point).

Google Drive mount

import google.colab.drive
google.colab.drive.mount('gdrive')
!ln -s gdrive/My\ Drive mydrive

Installation

!apt-get install -y xvfb python-opengl ffmpeg > /dev/null 2>&1
!pip install pyvirtualdisplay > /dev/null 2>&1
!pip -q install JSAnimation
!pip -q install chainerrl

Parameter initialization


gamename='Acrobot-v1'
# Set the discount factor that discounts future rewards.
gamma = 0.99
# Use epsilon-greedy for exploration
myepsilon=0.03
myDir='mydrive/OpenAI/Acrobot/'
mySteps=200000 # Train the agent for 2000 steps
my_eval_n_episodes=1 # 10 episodes are sampled for each evaluation
my_eval_max_episode_len=200  # Maximum length of each episodes
my_eval_interval=1000   # Evaluate the agent after every 1000 steps
myOutDir=myDir+'result'      # Save everything to 'result' directory
myAgentDir=myDir+'agent'      # Save Agent to 'agent' directory
myAnimName=myDir+'movie_acrobot.mp4'
myScoreName=myDir+"result/scores.txt"

Program

import


import chainer
import chainer.functions as F
import chainer.links as L
import chainerrl
import gym
import numpy as np

env initialize


env = gym.make(gamename)
print('observation space:', env.observation_space)
print('action space:', env.action_space)

obs = env.reset()
print('initial observation:', obs)
action = env.action_space.sample()
obs, r, done, info = env.step(action)
print('next observation:', obs)
print('reward:', r)
print('done:', done)
print('info:', info)

Deep Q Network setting


obs_size = env.observation_space.shape[0]
n_actions = env.action_space.n
q_func = chainerrl.q_functions.FCStateQFunctionWithDiscreteAction(
    obs_size, n_actions,
    n_hidden_layers=2, n_hidden_channels=50)

Use Adam to optimize q_func. eps=1e-2 is for stability.


optimizer = chainer.optimizers.Adam(eps=1e-2)
optimizer.setup(q_func)

Agent Setting DQN uses Experience Replay.

Specify a replay buffer and its capacity.

Since observations from CartPole-v0 is numpy.float64 while

Chainer only accepts numpy.float32 by default, specify a converter as a feature extractor function phi.


explorer = chainerrl.explorers.ConstantEpsilonGreedy(
    epsilon=myepsilon, random_action_func=env.action_space.sample)
replay_buffer = chainerrl.replay_buffer.ReplayBuffer(capacity=10 ** 6)
phi = lambda x: x.astype(np.float32, copy=False)
agent = chainerrl.agents.DoubleDQN(
    q_func, optimizer, replay_buffer, gamma, explorer,
    replay_start_size=500, update_interval=1,
    target_update_interval=100, phi=phi)

Train

Set up the logger to print info messages for understandability.


import logging
import sys
logging.basicConfig(level=logging.INFO, stream=sys.stdout, format='')
chainerrl.experiments.train_agent_with_evaluation(
    agent, env,steps=mySteps,eval_n_steps=None,eval_n_episodes=my_eval_n_episodes,eval_max_episode_len=my_eval_max_episode_len,
    eval_interval=my_eval_interval,outdir=myOutDir)
agent.save(myAgentDir)

Data Table


import pandas as pd
import glob
import os
score_files = glob.glob(myScoreName)
score_files.sort(key=os.path.getmtime)
score_file = score_files[-1]
df = pd.read_csv(score_file, delimiter='\t' )
df

figure Average_Q


df.plot(x='steps',y='average_q')

Test

import2


from pyvirtualdisplay import Display
display = Display(visible=0, size=(1024, 768))
display.start()


from JSAnimation.IPython_display import display_animation
from matplotlib import animation
import matplotlib.pyplot as plt
%matplotlib inline

Test Program


frames = []
env = gym.make(gamename)
envw = gym.wrappers.Monitor(env, myOutDir, force=True)

for i in range(3):
    obs = envw.reset()
    done = False
    R = 0
    t = 0
    while not done and t < 200:
        frames.append(envw.render(mode = 'rgb_array'))
        action = agent.act(obs)
        obs, r, done, _ = envw.step(action)
        R += r
        t += 1
    print('test episode:', i, 'R:', R)
    agent.stop_episode()
#envw.render()
envw.close()

from IPython.display import HTML
plt.figure(figsize=(frames[0].shape[1]/72.0, frames[0].shape[0]/72.0),dpi=72)
patch = plt.imshow(frames[0])
plt.axis('off') 
def animate(i):
    patch.set_data(frames[i])
anim = animation.FuncAnimation(plt.gcf(), animate, frames=len(frames),interval=50)
anim.save(myAnimName)
HTML(anim.to_jshtml())

Recommended Posts

Reinforcement learning 18 Colaboratory + Acrobat + ChainerRL
Reinforcement learning 17 Colaboratory + CartPole + ChainerRL
Reinforcement learning 28 colaboratory + OpenAI + chainerRL
Reinforcement learning 19 Colaboratory + Mountain_car + ChainerRL
Reinforcement learning 20 Colaboratory + Pendulum + ChainerRL
Reinforcement learning 21 Colaboratory + Pendulum + ChainerRL + A2C
Reinforcement learning 22 Colaboratory + CartPole + ChainerRL + A3C
Reinforcement learning 24 Colaboratory + CartPole + ChainerRL + ACER
Reinforcement learning 27 colaboratory 90-minute rule measures chainerRL (+ chokozainerRL)
Reinforcement learning 2 Installation of chainerrl
Reinforcement learning 9 ChainerRL magic remodeling
Reinforcement learning 13 Try Mountain_car with ChainerRL.
[Introduction] Reinforcement learning
Future reinforcement learning_2
Future reinforcement learning_1
Reinforcement learning 14 Pendulum was done at ChainerRL.
Reinforcement learning 11 Try OpenAI acrobot with ChainerRL.
Reinforcement learning 12 ChainerRL quick start guide windows version
Reinforcement learning 1 Python installation
Reinforcement learning 3 OpenAI installation
Reinforcement learning for tic-tac-toe
[Reinforcement learning] Bandit task
Python + Unity Reinforcement Learning (Learning)
Reinforcement learning 1 introductory edition
Reinforcement learning 7 Learning data log output
Play with reinforcement learning with MuZero
[Reinforcement learning] Tracking by multi-agent
Reinforcement learning 6 First Chainer RL
Reinforcement learning starting with Python
Reinforcement learning 5 Try programming CartPole?
Reinforcement learning Learn from today
Reinforcement learning 4 CartPole first step
Deep Reinforcement Learning 1 Introduction to Reinforcement Learning
Reinforcement learning 23 Create and use your own module with Colaboratory
Deep reinforcement learning 2 Implementation of reinforcement learning
DeepMind Reinforcement Learning Framework Acme
Reinforcement learning: Accelerate Value Iteration
I tried deep reinforcement learning (Double DQN) for tic-tac-toe with ChainerRL
TF2RL: Reinforcement learning library for TensorFlow2.x
Reinforcement learning 34 Make continuous Agent videos
Python + Unity Reinforcement learning environment construction
Explore the maze with reinforcement learning
Reinforcement learning 8 Try using Chainer UI
Reinforcement learning 3 Dynamic programming / TD method
Deep Reinforcement Learning 3 Practical Edition: Breakout
I tried reinforcement learning using PyBrain
Learn while making! Deep reinforcement learning_1