Reinforcement learning 22 Colaboratory + CartPole + ChainerRL + A3C

It is assumed that you have completed reinforcement learning 21. A3C is Asynchronous Advantage Actor-Critic Is an abbreviation for. Click here for a detailed explanation. [Reinforcement learning] A3C to learn while implementing [Stick with CartPole: Complete with 1 file] https://qiita.com/sugulu/items/acbc909dd9b74b043e45

As with 21, I made chainerRL a notebook as it is. It took some time and I got stuck in the 90 minute rule, so I did it in a small size.

Google drive mount

import google.colab.drive
google.colab.drive.mount('gdrive')
!ln -s gdrive/My\ Drive mydrive

program install

!apt-get install -y xvfb python-opengl ffmpeg > /dev/null 2>&1
!pip install pyvirtualdisplay > /dev/null 2>&1
!pip -q install JSAnimation
!pip -q install chainerrl

Main program An example of training A3C against OpenAI Gym Envs.

This script is an example of training a A3C agent against OpenAI Gym envs. Both discrete and continuous action spaces are supported.

modules import


from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from __future__ import absolute_import
from builtins import *  # NOQA
from future import standard_library
standard_library.install_aliases()  # NOQA
import argparse
import os
import sys


import chainer
from chainer import functions as F
from chainer import links as L
import gym
import numpy as np

import chainerrl
from chainerrl.agents import a3c
from chainerrl import experiments
from chainerrl import links
from chainerrl import misc
from chainerrl.optimizers.nonbias_weight_decay import NonbiasWeightDecay
from chainerrl.optimizers import rmsprop_async
from chainerrl import policies
from chainerrl.recurrent import RecurrentChainMixin
from chainerrl import v_function

Class A3CFFSoftmax An example of A3C feedforward softmax policy.


class A3CFFSoftmax(chainer.ChainList, a3c.A3CModel):
    def __init__(self, ndim_obs, n_actions, hidden_sizes=(200, 200)):
        self.pi = policies.SoftmaxPolicy(
            model=links.MLP(ndim_obs, n_actions, hidden_sizes))
        self.v = links.MLP(ndim_obs, 1, hidden_sizes=hidden_sizes)
        super().__init__(self.pi, self.v)

    def pi_and_v(self, state):
        return self.pi(state), self.v(state)

Class A3CFFMellowmax An example of A3C feedforward mellowmax policy.


class A3CFFMellowmax(chainer.ChainList, a3c.A3CModel):
    def __init__(self, ndim_obs, n_actions, hidden_sizes=(200, 200)):
        self.pi = policies.MellowmaxPolicy(
            model=links.MLP(ndim_obs, n_actions, hidden_sizes))
        self.v = links.MLP(ndim_obs, 1, hidden_sizes=hidden_sizes)
        super().__init__(self.pi, self.v)

    def pi_and_v(self, state):
        return self.pi(state), self.v(state)

Class A3CLSTMGaussian An example of A3C recurrent Gaussian policy.


class A3CLSTMGaussian(chainer.ChainList, a3c.A3CModel, RecurrentChainMixin):
    def __init__(self, obs_size, action_size, hidden_size=200, lstm_size=128):
        self.pi_head = L.Linear(obs_size, hidden_size)
        self.v_head = L.Linear(obs_size, hidden_size)
        self.pi_lstm = L.LSTM(hidden_size, lstm_size)
        self.v_lstm = L.LSTM(hidden_size, lstm_size)
        self.pi = policies.FCGaussianPolicy(lstm_size, action_size)
        self.v = v_function.FCVFunction(lstm_size)
        super().__init__(self.pi_head, self.v_head,
                         self.pi_lstm, self.v_lstm, self.pi, self.v)

    def pi_and_v(self, state):

        def forward(head, lstm, tail):
            h = F.relu(head(state))
            h = lstm(h)
            return tail(h)

        pout = forward(self.pi_head, self.pi_lstm, self.pi)
        vout = forward(self.v_head, self.v_lstm, self.v)

        return pout, vout

Main

args


import logging

parser = argparse.ArgumentParser()
parser.add_argument('--processes', type=int,default=8)
parser.add_argument('--env', type=str, default='CartPole-v0')
parser.add_argument('--arch', type=str, default='FFSoftmax',choices=('FFSoftmax', 'FFMellowmax', 'LSTMGaussian'))
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--outdir', type=str, default='mydrive/OpenAI/CartPole/result-a3c')
parser.add_argument('--t-max', type=int, default=5)
parser.add_argument('--beta', type=float, default=1e-2)    
parser.add_argument('--profile', action='store_true')
parser.add_argument('--steps', type=int, default=8 * 10 ** 7)
parser.add_argument('--eval-interval', type=int, default=10 ** 5)
parser.add_argument('--eval-n-runs', type=int, default=10)
parser.add_argument('--reward-scale-factor', type=float, default=1e-2)
parser.add_argument('--rmsprop-epsilon', type=float, default=1e-1)
parser.add_argument('--render', action='store_true', default=False)
parser.add_argument('--lr', type=float, default=7e-4)
parser.add_argument('--weight-decay', type=float, default=0.0)
parser.add_argument('--demo', action='store_true', default=False)
parser.add_argument('--load', type=str, default='')
parser.add_argument('--logger-level', type=int, default=logging.INFO)
parser.add_argument('--monitor', action='store_true')

Where you want to change

args =parser.parse_args([--env].[CartPole-v0'])

To do.


args = parser.parse_args(['--steps','300000','--eval-interval','10000'])
logging.basicConfig(level=args.logger_level, stream=sys.stdout, format='')

Set a random seed used in ChainerRL.

If you use more than one processes, the results will be no longer

deterministic even with the same random seed.


misc.set_random_seed(args.seed)

Set different random seeds for different subprocesses.

If seed=0 and processes=4, subprocess seeds are [0, 1, 2, 3].

If seed=1 and processes=4, subprocess seeds are [4, 5, 6, 7].


process_seeds = np.arange(args.processes) + args.seed * args.processes
assert process_seeds.max() < 2 ** 32
if not os.path.exists(args.outdir):
  os.makedirs(args.outdir)

function


def make_env(process_idx, test):
    env = gym.make(args.env)
    # Use different random seeds for train and test envs
    process_seed = int(process_seeds[process_idx])
    env_seed = 2 ** 32 - 1 - process_seed if test else process_seed
    env.seed(env_seed)
    # Cast observations to float32 because our model uses float32
    env = chainerrl.wrappers.CastObservationToFloat32(env)
    if args.monitor and process_idx == 0:
        env = chainerrl.wrappers.Monitor(env, args.outdir)
    if not test:
        # Scale rewards (and thus returns) to a reasonable range so that
        # training is easier
        env = chainerrl.wrappers.ScaleReward(env, args.reward_scale_factor)
    if args.render and process_idx == 0 and not test:
        env = chainerrl.wrappers.Render(env)
    return env

Select a model by type of action.


sample_env = gym.make(args.env)
timestep_limit = sample_env.spec.tags.get(
    'wrapper_config.TimeLimit.max_episode_steps')
obs_space = sample_env.observation_space
action_space = sample_env.action_space

# Switch policy types accordingly to action space types
if args.arch == 'LSTMGaussian':
    model = A3CLSTMGaussian(obs_space.low.size, action_space.low.size)
elif args.arch == 'FFSoftmax':
    model = A3CFFSoftmax(obs_space.low.size, action_space.n)
elif args.arch == 'FFMellowmax':
    model = A3CFFMellowmax(obs_space.low.size, action_space.n)

optimizer


opt = rmsprop_async.RMSpropAsync(
    lr=args.lr, eps=args.rmsprop_epsilon, alpha=0.99)
opt.setup(model)
opt.add_hook(chainer.optimizer.GradientClipping(40))
if args.weight_decay > 0:
    opt.add_hook(NonbiasWeightDecay(args.weight_decay))

Agent


agent = a3c.A3C(model, opt, t_max=args.t_max, gamma=0.99,
                beta=args.beta)
if args.load:
    agent.load(args.load)

train


experiments.train_agent_async(
    agent=agent,
    outdir=args.outdir,
    processes=args.processes,
    make_env=make_env,
    profile=args.profile,
    steps=args.steps,
    eval_n_steps=None,
    eval_n_episodes=args.eval_n_runs,
    eval_interval=args.eval_interval,
    max_episode_len=timestep_limit)

agent.save(args.outdir+'/agent')

import pandas as pd
import glob
import os
score_files = glob.glob(args.outdir+'/scores.txt')
score_files.sort(key=os.path.getmtime)
score_file = score_files[-1]
df = pd.read_csv(score_file, delimiter='\t' )
df

df.plot(x='steps',y='average_value')

from pyvirtualdisplay import Display
display = Display(visible=0, size=(1024, 768))
display.start()

from JSAnimation.IPython_display import display_animation
from matplotlib import animation
import matplotlib.pyplot as plt
%matplotlib inline

frames = []
env = gym.make(args.env)

process_seeds = np.arange(args.processes) + args.seed  * args.processes
assert process_seeds.max() < 2 ** 32
env_seed = int(process_seeds[0])
env.seed(env_seed)
env = chainerrl.wrappers.CastObservationToFloat32(env)
env = chainerrl.wrappers.ScaleReward(env, args.reward_scale_factor)

envw = gym.wrappers.Monitor(env, args.outdir, force=True)

for i in range(3):
    obs = envw.reset()
    done = False
    R = 0
    t = 0
    while not done and t < 200:
        frames.append(envw.render(mode = 'rgb_array'))
        action = agent.act(obs)
        obs, r, done, _ = envw.step(action)
        R += r
        t += 1
    print('test episode:', i, 'R:', R)
    agent.stop_episode()
envw.close()

from IPython.display import HTML
plt.figure(figsize=(frames[0].shape[1]/72.0, frames[0].shape[0]/72.0),dpi=72)
patch = plt.imshow(frames[0])
plt.axis('off') 
def animate(i):
    patch.set_data(frames[i])
anim = animation.FuncAnimation(plt.gcf(), animate, frames=len(frames),interval=50)
anim.save(args.outdir+'/test.mp4')
HTML(anim.to_jshtml())

Recommended Posts

Reinforcement learning 22 Colaboratory + CartPole + ChainerRL + A3C
Reinforcement learning 17 Colaboratory + CartPole + ChainerRL
Reinforcement learning 24 Colaboratory + CartPole + ChainerRL + ACER
Reinforcement learning 18 Colaboratory + Acrobat + ChainerRL
Reinforcement learning 28 colaboratory + OpenAI + chainerRL
Reinforcement learning 19 Colaboratory + Mountain_car + ChainerRL
Reinforcement learning 20 Colaboratory + Pendulum + ChainerRL
Reinforcement learning 27 colaboratory 90-minute rule measures chainerRL (+ chokozainerRL)
Reinforcement learning 2 Installation of chainerrl
Reinforcement learning 5 Try programming CartPole?
Reinforcement learning 4 CartPole first step
Reinforcement learning 13 Try Mountain_car with ChainerRL.
Reinforcement learning 14 Pendulum was done at ChainerRL.
Reinforcement learning 11 Try OpenAI acrobot with ChainerRL.
[Introduction] Reinforcement learning
Future reinforcement learning_2
Future reinforcement learning_1
Reinforcement learning 12 ChainerRL quick start guide windows version
Reinforcement learning 1 Python installation
Reinforcement learning 3 OpenAI installation
[Reinforcement learning] Bandit task
Python + Unity Reinforcement Learning (Learning)
Reinforcement learning 1 introductory edition
Reinforcement learning 23 Create and use your own module with Colaboratory
Play with reinforcement learning with MuZero
[Reinforcement learning] Tracking by multi-agent
Reinforcement learning 6 First Chainer RL
Reinforcement learning starting with Python
Reinforcement learning Learn from today
Deep Reinforcement Learning 1 Introduction to Reinforcement Learning
Deep reinforcement learning 2 Implementation of reinforcement learning
DeepMind Reinforcement Learning Framework Acme
Reinforcement learning: Accelerate Value Iteration
I tried deep reinforcement learning (Double DQN) for tic-tac-toe with ChainerRL