Implement the shortest path search for the maze

This article is the 20th day article of tomowarkar alone Advent Calendar 2019.

Introduction

I haven't touched on breadth-first search or depth-first search so far, but I was motivated somehow, so I wrote the shortest path search for the maze.

The content itself is something that often appears, and I haven't done anything unusual. I will write it as a memorandum and output.

Deliverables

image.png

code

def printMaze(maze):
    """Draw a maze"""
    for i in range(maze["height"]):
        row = maze["data"][i * maze["width"] : (i + 1) * maze["width"]]
        print(" ".join(row))


def at(x, y, maze):
    """Of the maze(x, y)Returns an object of coordinates"""
    return maze["data"][y * maze["width"] + x]


def setChar(x, y, char, maze):
    """Of the maze(x, y)Set the coordinate object"""
    arr = list(maze["data"])
    arr[y * maze["width"] + x] = char
    maze["data"] = "".join(arr)


if __name__ == "__main__":
    maze = {
        "width": 43,
        "height": 35,
        "data": "###########################################S #   #           #                       ## ### ########### # ################# ### ##   #           # # #               # # # #### ########### # # ##### ##### ### ### # ## #         # # #       # #   # # #     # ## ####### ### # ####### ### ### # ##### # ##         #       #         #     #     # ###### ### ##### ### ##### ### ##### ##### ##   # # # #   # #   # #   #   #     #     ## # # # # ### # # ### ### # ### ### # ### ## # # # #   # # # #     # # #   # # # # # ## # # # ##### # ####### ### # ### # # # # ## # # #       #       #     # #   # # # # ## # # # ##### ### ### ####### ### ### # # ## # # #   # #   # # #           #     # # ## # # ##### ### ### ########### ### ### # ## # #         #             # # # # #   # ## # ##### ### # ### ### ##### # # # ### # ## #     # # # # # #   # #       # #   # # ## ##### ### # ### ##### ### ### # ### # # ##     #     #               # # #   # #   #### # # ### ### ######### ### ### ### ### ## # # # # # #   #       # #             # ## ### ### ### ##### # ### ### ####### ### ##             #   # # #     # #   #   #   ## ### ####### ### ### # ##### ### ### # #### # # # #       #     # #       #   # #   ## # # # ### ### # ##### ##### ##### # ### ## # # # #   # # # #         #       #   # ## # # # # ### ### # # ####### ##### ### # ## # #   # #       # # #       #   # #   # ## # ##### # ####### # ######### ### # ### ## #       #         #               # #   G###########################################",
    }
    start = [0, 1]
    goal = [42, 33]

    visited = [False] * maze["width"] * maze["height"]
    costs = [999999] * maze["width"] * maze["height"]

    #Start position(0, 1)In the queue
    queue = [start]
    costs[start[1] * maze["width"] + start[0]] = 0

    while len(queue) > 0:
        #Get a position from the queue
        p, queue = queue[0], queue[1:]
        visited[p[1] * maze["width"] + p[0]] = True

        #Verify up, down, left and right
        for i in [[0, -1], [0, 1], [-1, 0], [1, 0]]:
            x, y = p[0] + i[0], p[1] + i[1]
            if x < 0 or y < 0 or x > maze["width"] - 1 or y > maze["height"] - 1:
                continue

            if at(x, y, maze) == " " and visited[y * maze["width"] + x] == False:
                queue.append([x, y])
                costs[y * maze["width"] + x] = costs[p[1] * maze["width"] + p[0]] + 1
            if at(x, y, maze) == "G":
                queue = []
                costs[y * maze["width"] + x] = costs[p[1] * maze["width"] + p[0]] + 1
                break
    #Follow costs from the goal to find the shortest path
    point = goal
    cost = costs[point[1] * maze["width"] + point[0]]
    while cost != 1:
        for i in [[0, -1], [0, 1], [-1, 0], [1, 0]]:
            x, y = point[0] + i[0], point[1] + i[1]
            if x < 0 or y < 0 or x > maze["width"] - 1 or y > maze["height"] - 1:
                continue
            if costs[y * maze["width"] + x] == cost - 1:
                cost = costs[y * maze["width"] + x]
                point = [x, y]
                setChar(x, y, ".", maze)
                break

    printMaze(maze)

Commentary

Defines the maze information in a dictionary type. " # " Is the wall " " is the passage, " S ", " G " is the start and goal respectively. At the same time, the (x, y) coordinates of the start and goal are also entered manually.

maze = {
    "width": 43,
    "height": 35,
    "data": "###########################################S #   #           #                       ## ### ########### # ################# ### ##   #           # # #               # # # #### ########### # # ##### ##### ### ### # ## #         # # #       # #   # # #     # ## ####### ### # ####### ### ### # ##### # ##         #       #         #     #     # ###### ### ##### ### ##### ### ##### ##### ##   # # # #   # #   # #   #   #     #     ## # # # # ### # # ### ### # ### ### # ### ## # # # #   # # # #     # # #   # # # # # ## # # # ##### # ####### ### # ### # # # # ## # # #       #       #     # #   # # # # ## # # # ##### ### ### ####### ### ### # # ## # # #   # #   # # #           #     # # ## # # ##### ### ### ########### ### ### # ## # #         #             # # # # #   # ## # ##### ### # ### ### ##### # # # ### # ## #     # # # # # #   # #       # #   # # ## ##### ### # ### ##### ### ### # ### # # ##     #     #               # # #   # #   #### # # ### ### ######### ### ### ### ### ## # # # # # #   #       # #             # ## ### ### ### ##### # ### ### ####### ### ##             #   # # #     # #   #   #   ## ### ####### ### ### # ##### ### ### # #### # # # #       #     # #       #   # #   ## # # # ### ### # ##### ##### ##### # ### ## # # # #   # # # #         #       #   # ## # # # # ### ### # # ####### ##### ### # ## # #   # #       # # #       #   # #   # ## # ##### # ####### # ######### ### # ### ## #       #         #               # #   G###########################################",
}
start = [0, 1]
goal = [42, 33]

Preparation

Define the queue and visited used for the search, and the costs used to guide the shortest path.

The maze is output as a two-dimensional array, but since all data processing is performed with a one-dimensional array, it is necessary to perform appropriate conversion.


visited = [False] * maze["width"] * maze["height"]
costs = [999999] * maze["width"] * maze["height"]

#Start position(0, 1)In the queue
queue = [start]
costs[start[1] * maze["width"] + start[0]] = 0

Search main process

Since it is a breadth-first search, we will take it out from the head of the queue and verify it. If the top, bottom, left, and right states are passages, we will add more and more to the queue. The cost update can be used to derive the shortest path by always adding +1 to the cost of the reference point.

    while len(queue) > 0:
        #Get a position from the queue
        p, queue = queue[0], queue[1:]
        visited[p[1] * maze["width"] + p[0]] = True

        #Verify up, down, left and right
        for i in [[0, -1], [0, 1], [-1, 0], [1, 0]]:
            x, y = p[0] + i[0], p[1] + i[1]
            if x < 0 or y < 0 or x > maze["width"] - 1 or y > maze["height"] - 1:
                continue

            if at(x, y, maze) == " " and visited[y * maze["width"] + x] == False:
                queue.append([x, y])
                costs[y * maze["width"] + x] = costs[p[1] * maze["width"] + p[0]] + 1
            if at(x, y, maze) == "G":
                queue = []
                costs[y * maze["width"] + x] = costs[p[1] * maze["width"] + p[0]] + 1
                break

Shortest path derivation

Since cost is the same as the distance taken from the start, the shortest path can be derived by going back to 0 from the cost of the goal position.

    #Follow costs from the goal to find the shortest path
    point = goal
    cost = costs[point[1] * maze["width"] + point[0]]
    while cost != 1:
        for i in [[0, -1], [0, 1], [-1, 0], [1, 0]]:
            x, y = point[0] + i[0], point[1] + i[1]
            if x < 0 or y < 0 or x > maze["width"] - 1 or y > maze["height"] - 1:
                continue
            if costs[y * maze["width"] + x] == cost - 1:
                cost = costs[y * maze["width"] + x]
                point = [x, y]
                setChar(x, y, ".", maze)
                break

    printMaze(maze)

result

image.png

in conclusion

I will do my best tomorrow! !! tomowarkar Alone Advent Calendar Advent Calendar 2019

reference

https://qiita.com/nati-ueno/items/a789095aff0aec10d5d0 https://vigne-cla.com/18-2/

Recommended Posts

Implement the shortest path search for the maze
First OSMnx ~ With shortest path search ~
Search for files with the specified extension
Search the maze with the python A * algorithm
[Reinforcement learning] Search for the best route
Python> sys.path> List of strings indicating the path to search for modules
Implement the REPL
[Introduction to Algorithm] Find the shortest path [Python3]
We will implement the optimization algorithm (cuckoo search)
Find the shortest path with the Python Dijkstra's algorithm
We will implement the optimization algorithm (harmony search)
Calculation of the shortest path using the Monte Carlo method
Solving the shortest path problem (VRP) Mixed integer programming
[Boto3] Search for Cognito users with the List Users API
Search for large files on Linux from the command line
Try a similar search for Image Search using the Python SDK [Search]
Search for variables in pandas.DataFrame and get the corresponding row.
[Understand in the shortest time] Python basics for data analysis
Google search for the last line of the file in Python