[Rabbit Challenge (E qualification)] Deep learning (day2)

Introduction

This is a learning record when I took the Rabbit Challenge with the aim of passing the Japan Deep Learning Association (JDLA) E qualification, which will be held on January 19th and 20th, 2021.

Rabbit Challenge is a course that utilizes the teaching materials edited from the recorded video of the commuting course of "Deep learning course that can be crushed in the field". There is no support for questions, but it is a cheap course (the lowest price as of June 2020) for taking the E qualification exam.

Please check the details from the link below.

List of subjects

Applied Mathematics Machine learning Deep learning (day1) Deep learning (day2) Deep learning (day3) Deep learning (day4)

Section1: Vanishing gradient problem

As the error backpropagation method progresses to the lower layers, the gradient becomes gentler and gentler. Therefore, the parameters of the lower layer are hardly changed by the update by the gradient descent method, and the training does not converge to the optimum value.

Gradient disappearance solution

--Selection of activation function

--ReLU function $ f(x) = \left\\{ \begin{array} \\\ x & (x > 0) \\\ 0 & (x \leq 0) \\\ \end{array} \right. $ Good results have been achieved by contributing to avoiding the vanishing gradient problem and sparsification.

--Initial weight setting --Xavier: When the number of nodes in the previous layer is n, the value obtained by multiplying the weight element by $ \ sqrt {\ frac {1} {n}} $. The activation functions are ReLu, sigmoid (logistic) function, and hyperbolic rectifier function (tanh). --He: When the number of nodes in the previous layer is n, the value obtained by multiplying the weight element by $ \ sqrt {\ frac {2} {n}} $. The activation function is ReLu.

What happens if I set the initial weight to 0? → Because all values are transmitted with the same value. Parameters are no longer tuned.

--Batch normalization A method to suppress the bias of input value data in mini-batch units. By adding a layer that has been processed to normalize the output of the middle layer, the output is forced to always follow a distribution with mean 0 and variance 1. It has the advantages of faster calculation and less gradient disappearance.

The mean and variance of the mini-batch $\mu_t=\frac{1}{N_t}\sum_{i=1}^{N_t}x_{ni}, \quad \sigma_t^2=\frac{1}{N_t}\sum_{i=1}^{N_t}(x_{ni}-\mu_t)^2$ When the output is normalized $\hat x_{ni}=\frac{x_{ni}-\mu_t}{\sqrt{\sigma_t^2-\theta}}$ Will be. This normalized output is linearly transformed with a learnable scaling parameter $ \ gamma $ and a shift parameter $ \ beta . $y_{ni}=\gamma x_{ni}+\beta$$

Contribution to gradient disappearance when the activation function, initial value of weight, and presence / absence of batch normalization are changed


import sys, os
sys.path.append(os.pardir)  #Settings for importing files in the parent directory
import numpy as np
from common import layers
from collections import OrderedDict
from common import functions
from data.mnist import load_mnist
import matplotlib.pyplot as plt
from common import optimizer

class MultiLayerNet:
    '''
    input_size:Number of nodes in the input layer
    hidden_size_list:List of hidden tier nodes
    output_size:Number of nodes in the output layer
    activation:Activation function
    weight_init_std:How to initialize weights
    weight_decay_lambda:Strength of L2 regularization
    use_dropout:With or without dropout
    dropout_ratio:Dropout rate
    use_batchnorm:With or without batch normalization
    '''
    def __init__(self, input_size, hidden_size_list, output_size, activation='relu', weight_init_std='relu', weight_decay_lambda=0,
                 use_dropout = False, dropout_ratio = 0.5, use_batchnorm=False):
        self.input_size = input_size
        self.output_size = output_size
        self.hidden_size_list = hidden_size_list
        self.hidden_layer_num = len(hidden_size_list)
        self.use_dropout = use_dropout
        self.weight_decay_lambda = weight_decay_lambda
        self.use_batchnorm = use_batchnorm
        self.params = {}

        #Weight initialization
        self.__init_weight(weight_init_std)

        #Layer generation
        activation_layer = {'sigmoid': layers.Sigmoid, 'relu': layers.Relu}
        self.layers = OrderedDict()
        for idx in range(1, self.hidden_layer_num+1):
            self.layers['Affine' + str(idx)] = layers.Affine(self.params['W' + str(idx)], self.params['b' + str(idx)])
            if self.use_batchnorm:
                self.params['gamma' + str(idx)] = np.ones(hidden_size_list[idx-1])
                self.params['beta' + str(idx)] = np.zeros(hidden_size_list[idx-1])
                self.layers['BatchNorm' + str(idx)] = layers.BatchNormalization(self.params['gamma' + str(idx)], self.params['beta' + str(idx)])
                
            self.layers['Activation_function' + str(idx)] = activation_layer[activation]()
            
            if self.use_dropout:
                self.layers['Dropout' + str(idx)] = layers.Dropout(dropout_ratio)

        idx = self.hidden_layer_num + 1
        self.layers['Affine' + str(idx)] = layers.Affine(self.params['W' + str(idx)], self.params['b' + str(idx)])

        self.last_layer = layers.SoftmaxWithLoss()

    def __init_weight(self, weight_init_std):
        all_size_list = [self.input_size] + self.hidden_size_list + [self.output_size]
        for idx in range(1, len(all_size_list)):
            scale = weight_init_std
            if str(weight_init_std).lower() in ('relu', 'he'):
                scale = np.sqrt(2.0 / all_size_list[idx - 1])  #Recommended initial value when using ReLU
            elif str(weight_init_std).lower() in ('sigmoid', 'xavier'):
                scale = np.sqrt(1.0 / all_size_list[idx - 1])  #Recommended initial value when using sigmoid
            self.params['W' + str(idx)] = scale * np.random.randn(all_size_list[idx-1], all_size_list[idx])
            self.params['b' + str(idx)] = np.zeros(all_size_list[idx])

    def predict(self, x, train_flg=False):
        for key, layer in self.layers.items():
            if "Dropout" in key or "BatchNorm" in key:
                x = layer.forward(x, train_flg)
            else:
                x = layer.forward(x)

        return x

    def loss(self, x, d, train_flg=False):
        y = self.predict(x, train_flg)

        weight_decay = 0
        for idx in range(1, self.hidden_layer_num + 2):
            W = self.params['W' + str(idx)]
            weight_decay += 0.5 * self.weight_decay_lambda * np.sum(W**2)

        return self.last_layer.forward(y, d) + weight_decay

    def accuracy(self, X, D):
        Y = self.predict(X, train_flg=False)
        Y = np.argmax(Y, axis=1)
        if D.ndim != 1 : D = np.argmax(D, axis=1)

        accuracy = np.sum(Y == D) / float(X.shape[0])
        return accuracy

    def gradient(self, x, d):
        # forward
        self.loss(x, d, train_flg=True)

        # backward
        dout = 1
        dout = self.last_layer.backward(dout)

        layers = list(self.layers.values())
        layers.reverse()
        for layer in layers:
            dout = layer.backward(dout)

        #Setting
        grads = {}
        for idx in range(1, self.hidden_layer_num+2):
            grads['W' + str(idx)] = self.layers['Affine' + str(idx)].dW + self.weight_decay_lambda * self.params['W' + str(idx)]
            grads['b' + str(idx)] = self.layers['Affine' + str(idx)].db

            if self.use_batchnorm and idx != self.hidden_layer_num+1:
                grads['gamma' + str(idx)] = self.layers['BatchNorm' + str(idx)].dgamma
                grads['beta' + str(idx)] = self.layers['BatchNorm' + str(idx)].dbeta

        return grads

#Batch regularization layer
class BatchNormalization:
    '''
    gamma:Scale factor
    beta:offset
    momentum:inertia
    running_mean:Average used during testing
    running_var:Distribution used during testing
    '''
    def __init__(self, gamma, beta, momentum=0.9, running_mean=None, running_var=None):
        self.gamma = gamma
        self.beta = beta
        self.momentum = momentum
        self.input_shape = None

        self.running_mean = running_mean
        self.running_var = running_var  
        
        #Intermediate data to use when backward
        self.batch_size = None
        self.xc = None
        self.std = None
        self.dgamma = None
        self.dbeta = None

    def forward(self, x, train_flg=True):
        if self.running_mean is None:
            N, D = x.shape
            self.running_mean = np.zeros(D)
            self.running_var = np.zeros(D)
                        
        if train_flg:
            mu = x.mean(axis=0) #average
            xc = x - mu #Center x
            var = np.mean(xc**2, axis=0) #Distributed
            std = np.sqrt(var + 10e-7) #scaling
            xn = xc / std
            
            self.batch_size = x.shape[0]
            self.xc = xc
            self.xn = xn
            self.std = std
            self.running_mean = self.momentum * self.running_mean + (1-self.momentum) * mu #Weighted average of mean
            self.running_var = self.momentum * self.running_var + (1-self.momentum) * var #Weighted average of variance values
        else:
            xc = x - self.running_mean
            xn = xc / ((np.sqrt(self.running_var + 10e-7)))
            
        out = self.gamma * xn + self.beta 
        
        return out

    def backward(self, dout):
        dbeta = dout.sum(axis=0)
        dgamma = np.sum(self.xn * dout, axis=0)
        dxn = self.gamma * dout
        dxc = dxn / self.std
        dstd = -np.sum((dxn * self.xc) / (self.std * self.std), axis=0)
        dvar = 0.5 * dstd / self.std
        dxc += (2.0 / self.batch_size) * self.xc * dvar
        dmu = np.sum(dxc, axis=0)
        dx = dxc - dmu / self.batch_size
        
        self.dgamma = dgamma
        self.dbeta = dbeta

        return dx    
    
#Data reading
# (x_train, d_train), (x_test, d_test) = load_mnist(normalize=True, one_hot_label=True)
(x_train, d_train), (x_test, d_test) = load_mnist(normalize=True)

print('Data reading completed')

activations = ['sigmoid', 'relu']
weight_init_stds = [0.01, 'Xavier', 'He']
use_batchnorms = [False, True]

iters_num = 2000
train_size = x_train.shape[0]
batch_size = 100
learning_rate = 0.1

plot_interval = 100
plot_idx = 0 

for k in range(len(activations)):
    for l in range(len(weight_init_stds)):
            for m in range(len(use_batchnorms)):
                network = MultiLayerNet(input_size=784, hidden_size_list=[40, 20], output_size=10, activation=activations[k], weight_init_std=weight_init_stds[l], use_batchnorm=use_batchnorms[m])

                train_loss_list = []
                accuracies_train = []
                accuracies_test = []
                lists = []
                plot_idx = plot_idx + 1

                for i in range(iters_num):            
                    batch_mask = np.random.choice(train_size, batch_size)
                    x_batch = x_train[batch_mask]
                    d_batch = d_train[batch_mask]

                    #Slope
                    grad = network.gradient(x_batch, d_batch)

                    for key in ('W1', 'W2', 'W3', 'b1', 'b2', 'b3'):
                        network.params[key] -= learning_rate * grad[key]

                    loss = network.loss(x_batch, d_batch)
                    train_loss_list.append(loss)

                    if (i + 1) % plot_interval == 0:
                        accr_test = network.accuracy(x_test, d_test)
                        accuracies_test.append(accr_test)        
                        accr_train = network.accuracy(x_batch, d_batch)
                        accuracies_train.append(accr_train)

                        print('Generation: ' + str(i+1) + '.Correct answer rate(training) = ' + str(accr_train))
                        print('                : ' + str(i+1) + '.Correct answer rate(test) = ' + str(accr_test))


                lists = range(0, iters_num, plot_interval)

                plt.rcParams['figure.figsize'] = (12.0, 10.0)
                plt.subplot(4,3,plot_idx)
                plt.plot(lists, accuracies_train, label='training set')
                plt.plot(lists, accuracies_test,  label='test set')
                plt.legend(loc='lower right')
                plt.title(activations[k] + ', '  + str(weight_init_stds[l]) + ',Batch normalization'  + str(use_batchnorms[m]) + ' ('  + str(np.round(accuracies_test[-1],2)) + ')')
                plt.xlabel('count')
                plt.ylabel('accuracy')
                plt.ylim(0, 1.0)
        
#Graph display
plt.tight_layout()
# plt.suptitle('Prediction accuracy when the activation function and initial weight values are changed', fontsize = 16)
plt.show()

image.png

Section2: Learning rate optimization method

If the value of the learning rate is large, the optimum value will not be reached forever and will diverge. If the value of the learning rate is small, it will not diverge, but if it is too small, it will take time to converge or it will be difficult to converge to the global local optimum value.

--Momentum $ V_t = \mu V_{t-1}-\epsilon\nabla E $ $ w^{(t+1)} = w^{(t)}+V_t $ After subtracting the product of the error differentiated by the parameter and the learning rate, the product of the current weight minus the previous weight and the inertia is added.

[Advantages of momentum] --It does not become a local optimum solution, but a global optimum solution. ――It takes a short time to reach the lowest position (optimum value) after reaching the valley.

Momentum gradient


#Slope
grad = network.gradient(x_batch, d_batch)
if i == 0:
    v = {}
for key in ('W1', 'W2', 'W3', 'b1', 'b2', 'b3'):
    if i == 0:
        v[key] = np.zeros_like(network.params[key])
    v[key] = momentum * v[key] - learning_rate * grad[key]
    network.params[key] += v[key]

    loss = network.loss(x_batch, d_batch)
    train_loss_list.append(loss)

image.png

[Advantages of AdaGrad] ――For slopes with gentle slopes, approach the optimum value.

Gradient of AdaGrad


#Slope
grad = network.gradient(x_batch, d_batch)
if i == 0:
    h = {}
for key in ('W1', 'W2', 'W3', 'b1', 'b2', 'b3'):
    if i == 0:
        h[key] = np.full_like(network.params[key], 1e-4)
    else:
        h[key] += np.square(grad[key])
    network.params[key] -= learning_rate * grad[key] / (np.sqrt(h[key]))

    loss = network.loss(x_batch, d_batch)
    train_loss_list.append(loss)    

image.png

[Advantages of RMS Drop] --It does not become a local optimum solution, but a global optimum solution. --There are few cases where hyperparameters need to be adjusted.

RMS Drop gradient


#Slope
grad = network.gradient(x_batch, d_batch)
if i == 0:
    h = {}
for key in ('W1', 'W2', 'W3', 'b1', 'b2', 'b3'):
    if i == 0:
        h[key] = np.zeros_like(network.params[key])
    h[key] *= decay_rate
    h[key] += (1 - decay_rate) * np.square(grad[key])
    network.params[key] -= learning_rate * grad[key] / (np.sqrt(h[key]) + 1e-7)

    loss = network.loss(x_batch, d_batch)
    train_loss_list.appen

image.png

[Advantages of Adam] --This is an algorithm that has the advantages of the exponential decay average of the past gradient of momentum and the exponential decay average of the square of the past gradient of RMSProp.

Adam's gradient


#Slope
grad = network.gradient(x_batch, d_batch)
if i == 0:
    m = {}
    v = {}
learning_rate_t  = learning_rate * np.sqrt(1.0 - beta2 ** (i + 1)) / (1.0 - beta1 ** (i + 1))    
for key in ('W1', 'W2', 'W3', 'b1', 'b2', 'b3'):
    if i == 0:
        m[key] = np.zeros_like(network.params[key])
        v[key] = np.zeros_like(network.params[key])

    m[key] += (1 - beta1) * (grad[key] - m[key])
    v[key] += (1 - beta2) * (grad[key] ** 2 - v[key])            
    network.params[key] -= learning_rate_t * m[key] / (np.sqrt(v[key]) + 1e-7)                

    loss = network.loss(x_batch, d_batch)
    train_loss_list.append(loss)

image.png

Section3: Overfitting

The learning curve deviates between the test error and the training error, and the learning is specialized for a specific training sample. There are the following methods to prevent overfitting.

--Use L2 norm: Ridge estimator (reduced estimator ... estimated to bring parameters closer to 0) $ \sum_{i=1}^n(y_i-\beta_0-\sum_{j=1}^p\beta_jx_{ij})^2 + \lambda\sum_{j=1}^p\beta_j^2 $ $ \ lambda $: Hyperparameters --Same as least squares if $ \ lambda $ is zero -If you increase $ \ lambda $, $ \ beta_1,…, \ beta_p $ approaches 0 (note that there is no penalty for $ \ beta_0 $) --Determine an appropriate value by cross-validation, etc.

--Using the L1 norm: Lasso (the Least absolute shrinkage and selection operator) estimator (sparse estimation ... some parameters are estimated to be exactly 0) $ \sum_{i=1}^n(y_i-\beta_0-\sum_{j=1}^p\beta_jx_{ij})^2 + \lambda\sum_{j=1}^p|\beta_j| $ --Penalty proportional to the L1 norm of the parameter --Many parameters become 0 when $ \ lambda $ is increased $ \ rightarrow $ Generate sparse model by variable selection


No regularization (reproduction of overfitting)
(optimizer.SGD(learning_rate=0.01)) image.png


L2 regularization
(learning_rate=0.01) image.png


L1 regularization
(learning_rate=0.1) image.png


Dropout
(optimizer.SGD(learning_rate=0.01), weight_decay_lambda = 0.01) image.png (optimizer.Momentum(learning_rate=0.01, momentum=0.9), weight_decay_lambda = 0.01) image.png (optimizer.AdaGrad(learning_rate=0.01), weight_decay_lambda = 0.01) image.png (optimizer.Adam(learning_rate=0.01), weight_decay_lambda = 0.01) image.png


Dropout + L1 regularization
(dropout_ratio = 0.1, weight_decay_lambda=0.005) image.png

Section4: Convolutional Neural Network Concept

Convolutional arithmetic concept

--Bias image.png

-(Zero) padding image.png

--Stride image.png

If the input size is W × H, the filter size is Fw × Fh, the padding is p, the stride is s, and the output size of the convolution layer is OW × OH, OW and OH are calculated by the following equations. $ OW=\frac{W+2p-Fw}{s}+1, \quad OH=\frac{H+2p-Fh}{s}+1 $

Disadvantages of fully connected layer: In the case of an image, it is 3D data of vertical, horizontal, and channel, but it is processed as 1D data. That is, the relationship between each RGB channel is not reflected in learning.

Section5: Latest CNN (although it can't be called the latest as of 2020 ...)

AlexNet

スクリーンショット 2020-07-18 19.37.25.png

It is named Alex Net after the name of the lead author of the paper, Alex Krizhevsky. It is composed of three fully connected layers, including a five-layer convolution layer and a pooling layer. Compared to LeNet, a CNN first devised in 1998 by Yann LeCun et al., It has a considerably deeper structure. A dropout is used for the output of the fully connected layer of size 4096 to prevent overfitting.

Chainer's AlexNet has the following code.

alex.py


import chainer
import chainer.functions as F
import chainer.links as L


class Alex(chainer.Chain):

    """Single-GPU AlexNet without partition toward the channel axis."""

    insize = 227

    def __init__(self):
        super(Alex, self).__init__()
        with self.init_scope():
            self.conv1 = L.Convolution2D(None, 96, 11, stride=4)
            self.conv2 = L.Convolution2D(None, 256, 5, pad=2)
            self.conv3 = L.Convolution2D(None, 384, 3, pad=1)
            self.conv4 = L.Convolution2D(None, 384, 3, pad=1)
            self.conv5 = L.Convolution2D(None, 256, 3, pad=1)
            self.fc6 = L.Linear(None, 4096)
            self.fc7 = L.Linear(None, 4096)
            self.fc8 = L.Linear(None, 1000)

    def __call__(self, x, t):
        h = F.max_pooling_2d(F.local_response_normalization(
            F.relu(self.conv1(x))), 3, stride=2)
        h = F.max_pooling_2d(F.local_response_normalization(
            F.relu(self.conv2(h))), 3, stride=2)
        h = F.relu(self.conv3(h))
        h = F.relu(self.conv4(h))
        h = F.max_pooling_2d(F.relu(self.conv5(h)), 3, stride=2)
        h = F.dropout(F.relu(self.fc6(h)))
        h = F.dropout(F.relu(self.fc7(h)))
        h = self.fc8(h)

        loss = F.softmax_cross_entropy(h, t)
        chainer.report({'loss': loss, 'accuracy': F.accuracy(h, t)}, self)
        return loss

Recommended Posts

[Rabbit Challenge (E qualification)] Deep learning (day2)
[Rabbit Challenge (E qualification)] Deep learning (day3)
[Rabbit Challenge (E qualification)] Deep learning (day4)
Rabbit Challenge Deep Learning 1Day
Rabbit Challenge Deep Learning 2Day
[Rabbit Challenge (E qualification)] Applied Mathematics
Rabbit Challenge 4Day
Rabbit Challenge 3DAY
Machine learning rabbit challenge
<Course> Deep Learning: Day2 CNN
<Course> Deep Learning: Day1 NN
Subjects> Deep Learning: Day3 RNN
[Deep Learning Association E Qualification] What to do to receive
Thoroughly study Deep Learning [DW Day 0]
Deep Learning
<Course> Deep Learning Day4 Reinforcement Learning / Tensor Flow
Deep Learning Memorandum
Start Deep learning
Python learning day 4
Python Deep Learning
Deep learning × Python
First Deep Learning ~ Struggle ~
Python: Deep Learning Practices
Deep learning / activation functions
Deep Learning from scratch
Learning record 4 (8th day)
Learning record 9 (13th day)
Learning record 3 (7th day)
Deep learning 1 Practice of deep learning
Deep learning / cross entropy
Learning record 5 (9th day)
Learning record 6 (10th day)
First Deep Learning ~ Preparation ~
Programming learning record day 2
First Deep Learning ~ Solution ~
Learning record 8 (12th day)
[AI] Deep Metric Learning
Learning record 1 (4th day)
Learning record 7 (11th day)
I tried deep learning
Python: Deep Learning Tuning
Learning record 2 (6th day)
Deep learning large-scale technology
Learning record 16 (20th day)
Learning record 22 (26th day)
Deep learning / softmax function
[Deep learning] Image classification with convolutional neural network [DW day 4]
Automatic composition by deep learning (Stacked LSTM edition) [DW Day 6]