Euclidean algorithm and extended Euclidean algorithm

Euclidean algorithm

Given the integers $ a, b (a> b) $, if $ a $ is divided by $ b $ and the remainder is $ r $. Using the fact that the greatest common divisor of $ a $ and $ b $ is equal to the greatest common divisor of $ b $ and $ r $ (the principle of division), the greatest common divisor of $ a and b $ is calculated by repeating the division. How to find it.

algorithm

Input integers $ a, b $ Output: Greatest common divisor $ d $

  1. a_0 = a,a_1 = b
  2. When $ a_i = 0 $, set $ d = a_ {i-1} $ and finish.
  3. Return to 2 as $ a_ {i-1} = a_iq_i + a_ {i + 1} $

code

euclid.py


def euclid(a,b):
    a_list = []
    if a < b: 
        a_list.append(b)
        a_list.append(a)
    if a >= b:
        a_list.append(a)
        a_list.append(b)

    i = 0
    while(a_list[-1]!=0):
        a_list.append(a_list[i]%a_list[i+1])
        i +=1
    return a_list[-2]

Extended Euclidean algorithm

A method of finding one solution of a linear indefinite equation using the following mechanism. When finding $ ax + by = d $, set $ a_0 = a, a_1 = b $.

[\begin{array}{cc} a_{i-1} \\ a_i \end{array}]= [\begin{array}{cc} a_iq_i+a_{i+1} \\ a_i \end{array}] Then $[\begin{array}{cc} a_{i-1} \ a_i \end{array}]= [\begin{array}{cc} q_i & 1 \ 1 & 0 \end{array}] [\begin{array}{cc} a_i \ a_{i+1} \end{array}] $ Call. $[\begin{array}{cc} q_i & 1 \ 1 & 0 \ end {array}] Let the inverse matrix of $ be $ L_i $. $[\begin{array}{cc} a_i \ a_{i+1} \end{array}]=L_i [\begin{array}{cc} a_{i-1} \ a_i \end{array}] $ If you repeat this, $[\begin{array}{cc} d \ 0 \end{array}]=L_i,\dots,L_2 [\begin{array}{cc} a \ b \end{array}] $ It becomes.

algorithm

Input integers $ a, b $ Output: Integers $ x, y $ with the greatest common divisor $ d $ and $ ax + by = d $

  1. Set $ a_0 = a $, $ a_1 = b $.
  2. Set $ x_0 = 1 $, $ x_1 = 0 $, $ y_0 = 0 $, $ y_1 = 1 $.
  3. When $ a_i = 0 $, $ d = a_i−1 $, $ x = x_ {i−1} $, $ y = y_ {i−1} $ and the process ends.
  4. $ a_ {i−1} = a_iq_i + a_ {i + 1} $ defines $ a_ {i + 1} $ and $ q_i $. x_{i+1} = x_{i−1} − q_ix_i y_i+1=y_i−1−q_iy_i Return to 3.

code

exEuclid.py


def exEuclid(a,b):
    a_list = []
    if a < b: 
        a_list.append(b)
        a_list.append(a)
    if a >= b:
        a_list.append(a)
        a_list.append(b)

    q = []
    x = []
    x.append(1)
    x.append(0)
    y = []
    y.append(0)
    y.append(1)

    i = 0
    while(a_list[-1]!=0):
        a_list.append(a_list[i]%a_list[i+1])
        q.append(a_list[i]//a_list[i+1])
        x.append(x[-2]-q[-1]*x[-1])
        y.append(y[-2]-q[-1]*y[-1])
        i +=1
    return x[-2],y[-2],a_list[-2]

Recommended Posts

Euclidean algorithm and extended Euclidean algorithm
Non-recursive implementation of extended Euclidean algorithm (Python)
Comparison of R and Python writing (Euclidean algorithm)
Rabbit and turtle algorithm
Reproduce Euclidean algorithm in Python
Explanation and implementation of ESIM algorithm
Sorting algorithm and implementation in Python
Understanding and implementing the Tonelli-Shanks algorithm (2)
Box Cox transformation and wood algorithm
Understanding and implementing the Tonelli-Shanks algorithm (1)
Lasso's theory and implementation-Sparse solution estimation algorithm-
Behind the graph drawing algorithm and Networkx
Machine learning algorithm classification and implementation summary
Explanation and implementation of Decomposable Attention algorithm