Simple grid search template using Scikit-learn

Grid search using Scikit-learn

In this article, we will do a simple grid search using scikit-learn (Python). It's a hassle to check every time, so I chose a template.

Grid search

What is grid search?

This time, we will do a grid search using scikit-learn's GridSearchCV. Official page: https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html

Please refer to the following page.

Cross-validation and grid search: https://qiita.com/Takayoshi_Makabe/items/d35eed0c3064b495a08b

Library to use

This time, we will perform a grid search assuming a regression problem.

from sklearn.metrics import mean_absolute_error #MAE
from sklearn.metrics import mean_squared_error #MSE
from sklearn.metrics import make_scorer

from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import KFold

RMSE RMSE is not in the scikit-learn package, so you define the function yourself.

def rmse(y_true,y_pred):
    #Calculate RMSE
    rmse = np.sqrt(mean_squared_error(y_true,y_pred))
    print('rmse',rmse)
    return rmse

K Fold

kf = KFold(n_splits=5,shuffle=True,random_state=0)

Linear SVR When doing linear support vectors, it seems faster to use LinearSVR than to use SVR.

from sklearn.svm import LinearSVR

params_cnt = 10
max_iter = 1000

params = {"C":np.logspace(0,1,params_cnt), "epsilon":np.logspace(-1,1,params_cnt)}
'''
epsilon : Epsilon parameter in the epsilon-insensitive loss function.
          Note that the value of this parameter depends on the scale of the target variable y.
          If unsure, set epsilon=0.
C : Regularization parameter.
    The strength of the regularization is inversely proportional to C.
    Must be strictly positive.
https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVR.html
'''
gridsearch = GridSearchCV(
 LinearSVR(max_iter=max_iter,random_state=0),
 params,
 cv=kf,
 scoring=make_scorer(rmse,greater_is_better=False),
 return_train_score=True,
 n_jobs=-1
 )

gridsearch.fit(X_trainval, y_trainval)
print('The best parameter = ',gridsearch.best_params_)
print('RMSE = ',-gridsearch.best_score_)

LSVR = LinearSVR(max_iter=max_iter,random_state=0,C=gridsearch.best_params_["C"], epsilon=gridsearch.best_params_["epsilon"])

Kernel SVR

from sklearn.svm import SVR

params_cnt = 10
params = {"kernel":['rbf'],
 "C":np.logspace(0,1,params_cnt),
 "epsilon":np.logspace(-1,1,params_cnt)}

gridsearch = GridSearchCV(
 SVR(gamma='auto'),
 params, cv=kf,
 scoring=make_scorer(rmse,greater_is_better=False),
 n_jobs=-1
 )
'''
epsilon : Epsilon parameter in the epsilon-insensitive loss function.
          Note that the value of this parameter depends on the scale of the target variable y.
          If unsure, set epsilon=0.
C : Regularization parameter.
    The strength of the regularization is inversely proportional to C.
    Must be strictly positive.
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html
'''

gridsearch.fit(X_trainval, y_trainval)
print('The best parameter = ',gridsearch.best_params_)
print('RMSE = ',-gridsearch.best_score_)
print()

KSVR =SVR(
 kernel=gridsearch.best_params_['kernel'],
 C=gridsearch.best_params_["C"],
 epsilon=gridsearch.best_params_["epsilon"]
)

RandomForest Random forest is a guy who doesn't have to tune hyperparameters too much, It may not make much sense, but I made it, so I will post it.

from sklearn.ensemble import RandomForestRegressor

params = {
 "max_depth":[2,5,10],
 "n_estimators":[10,20,30,40,50] n_The larger the estimators, the higher the accuracy, so when you have time, you should increase it. But it takes time
 }
gridsearch = GridSearchCV(
 RandomForestRegressor(random_state=0),
 params,
 cv=kf,
 scoring=make_scorer(rmse,greater_is_better=False),
 n_jobs=-1
 )
'''
n_estimators : The number of trees in the forest.
max_depth : The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples.
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
'''
gridsearch.fit(X_trainval, y_trainval)
print('The best parameter = ',gridsearch.best_params_)
print('RMSE = ',-gridsearch.best_score_)
print()
RF = RandomForestRegressor(random_state=0,n_estimators=gridsearch.best_params_["n_estimators"], max_depth=gridsearch.best_params_["max_depth"])

Finally

GridSearchCV is convenient because you can tune in just a few lines. This time, I made it with 3 models, but of course other models can be done.

Recommended Posts

Simple grid search template using Scikit-learn
Grid search of hyperparameters with Scikit-learn
Search Twitter using Python
Try using scikit-learn (1) --K-means clustering
In-graph path search using Networkx
Search algorithm using word2vec [python]
python: Basics of using scikit-learn ①
# 1 [python3] Simple calculation using variables
Try using Django's template feature
I tried cross-validation based on the grid search results with scikit-learn