I decided to make a simple app with the technology I learned by studying AI. I made something like the following. The reason I chose Anpanman was because it was a manga character that I could easily write. The model wanted to handle GAN and that it was possible to detect anomalies by learning only normal images. I decided to use ANOGAN, but when I looked it up, it was called EfficientGAN in the high-speed version of ANOGAN. There seems to be something, so I chose it. Also, for simplicity, I created it on the premise that only Anpanman's face is identified.
I collected Anpanman images by scraping from the net, processed the images and cut out only the face. Also, as described later, the background of the mobile phone image was gray, so to learn the background as well. The gray gradation data was expanded using the following function.
from PIL import Image, ImageOps
import numpy as np
def make_gray_gradation(img, gradation_range=(230, 255)):
"""
Convert the background of the input image to a random degree of gray gradient
Input :Image file(Color is also acceptable)
Output :Image file(Image with gray gradient conversion background)
Pramater
img :Input image
gradation_range :Range of RGB values to gradient
"""
gra_range = np.random.randint(*gradation_range)
gray = ImageOps.grayscale(img)
output = ImageOps.colorize(gray, black=(0, 0, 0), white=(gra_range, gra_range, gra_range))
return output
The normal image is Anpanman, who wrote the illustration image through the drawing paper. I used an image of Anpanman written by me and my alumni taken with a mobile phone.
The abnormal image is an image of Baikinman, Dokin-chan, etc. taken with a mobile phone in the same way as above. I used a bad Anpanman image scraped on the net.
Since the background of the input image taken with the mobile phone was gray, there is also a gray gradation in the learning image I put it in, but I couldn't reproduce it well. The score also depends on whether the background is generated well, rather than whether Anpanman's picture is drawn well. It seems that it has been decided, and the threshold value for discriminating abnormal images was not decided well.
As a countermeasure, make the background all white for all images, and just make sure that the outline of the picture resembles Anpanman. I made it possible to determine whether the picture is abnormal. The following is a function that binarizes the input image.
import os
import scipy.stats as stats
from PIL import Image
def image_binarization(path_in, path_out, th_zero_num=1400, width=100, height=100):
"""
The outline of the input image is binarized in black and white and output.
Input :Folder path where image files are stored(The end is/) (Only images can be placed in the folder)
Output :Save the binarized image in the specified folder. 0 after binarization(Outline)Output the number of dots.
Pramater
path_in :Directory path containing input images
path_out :Output directory path
th_zero_num :0 in the image(Outline)MIN value of the number of dots of(If the outline is too dark, make it smaller and adjust)
width :Image width size
height :Vertical size of the image
"""
list_in = os.listdir(path_in)
im_np_out = np.empty((0, width*height))
for img in list_in:
path_name = path_in+img
x_img = cv2.imread(path_name)
x_img = cv2.resize(x_img, (width, height))
x_img= cv2.cvtColor(x_img, cv2.COLOR_BGR2GRAY)
x_img = np.array(x_img)
x_img = x_img / 255.0
x_img = x_img.reshape((1, width, height))
x_img = x_img.reshape(1, width*height)
m = stats.mode(x_img)
max_hindo = m.mode[0][0]
for c in reversed(range(50)):
th = (c+1)*0.01
th_0_1 = max_hindo-th
x_img_ = np.where(x_img>th_0_1, 1, 0)
if (np.count_nonzero(x_img_ == 0))>th_zero_num:
break
display(np.count_nonzero(x_img_ == 0))
x_img = x_img_.reshape(width, height)
x_img = (x_img * 2.0) - 1.0
img_np_255 = (x_img + 1.0) * 127.5
img_np_255_mod1 = np.maximum(img_np_255, 0)
img_np_255_mod1 = np.minimum(img_np_255_mod1, 255)
img_np_uint8 = img_np_255_mod1.astype(np.uint8)
image = Image.fromarray(img_np_uint8)
image.save(path_out+img, quality=95)
The distribution of the score was divided to some extent between the correct image and the abnormal image, so for the time being, roughly It seems that you can decide the threshold value that distinguishes between normal and abnormal. (The threshold was set at 0.40372)
Enter the Anpanman image with only 5 illustration images watermarked, Others entered 14 poor Anpanman scraped on the net. (Enter after binarizing using the above binarization function)
The judgment result is represented by the background color of the score display frame. If the background is blue, it is a normal image, and if it is red, it is an abnormal image. As a result, 4/5 was judged to be normal for Anpanman who opened the illustration. 8/14 is an abnormality judgment for other scraped poor Anpanman The correct answer rate was 12/19 = 63.15%. I have to improve the accuracy.
・ Even though I took a picture drawn on pure white drawing paper, the background of the actual image was gray. By feeling the magnitude of the influence of light and devising a method such as binarization, limiting it to conditions that are easier to learn. I learned that accuracy can be improved. -In order to improve the accuracy of GAN, add noise to Grobal Avarage Pooling, Leaky ReLu, layers, etc. I think it was good to be able to try various accuracy improvement methods. (Although the result did not improve much)
I would like to investigate and try various measures to improve the accuracy of GAN. Also, I used to use Google Colab and AWS EC2, but in the future various things such as AWS SageMaker and GCP I would like to study using the cloud.
train_BiGAN.py
import numpy as np
import os
import tensorflow as tf
import utility as Utility
import argparse
import matplotlib.pyplot as plt
from model_BiGAN import BiGAN as Model
from make_datasets_TRAIN import Make_datasets_TRAIN as Make_datasets
def parser():
parser = argparse.ArgumentParser(description='train LSGAN')
parser.add_argument('--batch_size', '-b', type=int, default=300, help='Number of images in each mini-batch')
parser.add_argument('--log_file_name', '-lf', type=str, default='anpanman', help='log file name')
parser.add_argument('--epoch', '-e', type=int, default=1001, help='epoch')
parser.add_argument('--file_train_data', '-ftd', type=str, default='../Train_Data/191103/', help='train data')
parser.add_argument('--test_true_data', '-ttd', type=str, default='../Valid_True_Data/191103/', help='test of true_data')
parser.add_argument('--test_false_data', '-tfd', type=str, default='../Valid_False_Data/191103/', help='test of false_data')
parser.add_argument('--valid_span', '-vs', type=int, default=100, help='validation span')
return parser.parse_args()
args = parser()
#global variants
BATCH_SIZE = args.batch_size
LOGFILE_NAME = args.log_file_name
EPOCH = args.epoch
FILE_NAME = args.file_train_data
TRUE_DATA = args.test_true_data
FALSE_DATA = args.test_false_data
IMG_WIDTH = 100
IMG_HEIGHT = 100
IMG_CHANNEL = 1
BASE_CHANNEL = 32
NOISE_UNIT_NUM = 200
NOISE_MEAN = 0.0
NOISE_STDDEV = 1.0
TEST_DATA_SAMPLE = 5 * 5
L2_NORM = 0.001
KEEP_PROB_RATE = 0.5
SEED = 1234
SCORE_ALPHA = 0.9 # using for cost function
VALID_SPAN = args.valid_span
np.random.seed(seed=SEED)
BOARD_DIR_NAME = './tensorboard/' + LOGFILE_NAME
OUT_IMG_DIR = './out_images_BiGAN' #output image file
out_model_dir = './out_models_BiGAN/' #output model_ckpt file
#Load_model_dir = '../model_ckpt/' #Load model_ckpt file
OUT_HIST_DIR = './out_score_hist_BiGAN' #output histogram file
CYCLE_LAMBDA = 1.0
try:
os.mkdir('log')
os.mkdir('out_graph')
os.mkdir(OUT_IMG_DIR)
os.mkdir(out_model_dir)
os.mkdir(OUT_HIST_DIR)
os.mkdir('./out_images_Debug') #for debug
except:
pass
make_datasets = Make_datasets(FILE_NAME, TRUE_DATA, FALSE_DATA, IMG_WIDTH, IMG_HEIGHT, SEED)
model = Model(NOISE_UNIT_NUM, IMG_CHANNEL, SEED, BASE_CHANNEL, KEEP_PROB_RATE)
z_ = tf.placeholder(tf.float32, [None, NOISE_UNIT_NUM], name='z_') #noise to generator
x_ = tf.placeholder(tf.float32, [None, IMG_HEIGHT, IMG_WIDTH, IMG_CHANNEL], name='x_') #image to classifier
d_dis_f_ = tf.placeholder(tf.float32, [None, 1], name='d_dis_g_') #target of discriminator related to generator
d_dis_r_ = tf.placeholder(tf.float32, [None, 1], name='d_dis_r_') #target of discriminator related to real image
is_training_ = tf.placeholder(tf.bool, name = 'is_training')
with tf.variable_scope('encoder_model'):
z_enc = model.encoder(x_, reuse=False, is_training=is_training_)
with tf.variable_scope('decoder_model'):
x_dec = model.decoder(z_, reuse=False, is_training=is_training_)
x_z_x = model.decoder(z_enc, reuse=True, is_training=is_training_) # for cycle consistency
with tf.variable_scope('discriminator_model'):
#stream around discriminator
drop3_r, logits_r = model.discriminator(x_, z_enc, reuse=False, is_training=is_training_) #real pair
drop3_f, logits_f = model.discriminator(x_dec, z_, reuse=True, is_training=is_training_) #real pair
drop3_re, logits_re = model.discriminator(x_z_x, z_enc, reuse=True, is_training=is_training_) #fake pair
with tf.name_scope("loss"):
loss_dis_f = tf.reduce_mean(tf.square(logits_f - d_dis_f_), name='Loss_dis_gen') #loss related to generator
loss_dis_r = tf.reduce_mean(tf.square(logits_r - d_dis_r_), name='Loss_dis_rea') #loss related to real image
#total loss
loss_dis_total = loss_dis_f + loss_dis_r
loss_dec_total = loss_dis_f
loss_enc_total = loss_dis_r
with tf.name_scope("score"):
l_g = tf.reduce_mean(tf.abs(x_ - x_z_x), axis=(1,2,3))
l_FM = tf.reduce_mean(tf.abs(drop3_r - drop3_re), axis=1)
score_A = SCORE_ALPHA * l_g + (1.0 - SCORE_ALPHA) * l_FM
with tf.name_scope("optional_loss"):
loss_dec_opt = loss_dec_total + CYCLE_LAMBDA * l_g
loss_enc_opt = loss_enc_total + CYCLE_LAMBDA * l_g
tf.summary.scalar('loss_dis_total', loss_dis_total)
tf.summary.scalar('loss_dec_total', loss_dec_total)
tf.summary.scalar('loss_enc_total', loss_enc_total)
merged = tf.summary.merge_all()
# t_vars = tf.trainable_variables()
dec_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope="decoder")
enc_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope="encoder")
dis_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope="discriminator")
with tf.name_scope("train"):
train_dis = tf.train.AdamOptimizer(learning_rate=0.0001, beta1=0.5).minimize(loss_dis_total, var_list=dis_vars
, name='Adam_dis')
train_dec = tf.train.AdamOptimizer(learning_rate=0.01, beta1=0.5).minimize(loss_dec_total, var_list=dec_vars
, name='Adam_dec')
train_enc = tf.train.AdamOptimizer(learning_rate=0.005, beta1=0.5).minimize(loss_enc_total, var_list=enc_vars
, name='Adam_enc')
train_dec_opt = tf.train.AdamOptimizer(learning_rate=0.005, beta1=0.5).minimize(loss_dec_opt, var_list=dec_vars
, name='Adam_dec')
train_enc_opt = tf.train.AdamOptimizer(learning_rate=0.005, beta1=0.5).minimize(loss_enc_opt, var_list=enc_vars
, name='Adam_enc')
sess = tf.Session()
ckpt = tf.train.get_checkpoint_state(out_model_dir)
saver = tf.train.Saver()
if ckpt: #If there is a checkpoint
last_model = ckpt.model_checkpoint_path #Path to the last saved model
saver.restore(sess, last_model) #Reading variable data
print("load " + last_model)
else: #When there is no saved data
#init = tf.initialize_all_variables()
sess.run(tf.global_variables_initializer())
summary_writer = tf.summary.FileWriter(BOARD_DIR_NAME, sess.graph)
log_list = []
log_list.append(['epoch', 'AUC'])
#training loop
for epoch in range(0, EPOCH):
sum_loss_dis_f = np.float32(0)
sum_loss_dis_r = np.float32(0)
sum_loss_dis_total = np.float32(0)
sum_loss_dec_total = np.float32(0)
sum_loss_enc_total = np.float32(0)
len_data = make_datasets.make_data_for_1_epoch()
for i in range(0, len_data, BATCH_SIZE):
img_batch = make_datasets.get_data_for_1_batch(i, BATCH_SIZE)
z = make_datasets.make_random_z_with_norm(NOISE_MEAN, NOISE_STDDEV, len(img_batch), NOISE_UNIT_NUM)
tar_g_1 = make_datasets.make_target_1_0(1.0, len(img_batch)) #1 -> real
tar_g_0 = make_datasets.make_target_1_0(0.0, len(img_batch)) #0 -> fake
#train discriminator
sess.run(train_dis, feed_dict={z_:z, x_: img_batch, d_dis_f_: tar_g_0, d_dis_r_: tar_g_1, is_training_:True})
#train decoder
sess.run(train_dec, feed_dict={z_:z, d_dis_f_: tar_g_1, is_training_:True})
# sess.run(train_dec_opt, feed_dict={z_:z, x_: img_batch, d_dis_f_: tar_g_1, is_training_:True})
#train encoder
sess.run(train_enc, feed_dict={x_:img_batch, d_dis_r_: tar_g_0, is_training_:True})
# sess.run(train_enc_opt, feed_dict={x_:img_batch, d_dis_r_: tar_g_0, is_training_:True})
# loss for discriminator
loss_dis_total_, loss_dis_r_, loss_dis_f_ = sess.run([loss_dis_total, loss_dis_r, loss_dis_f],
feed_dict={z_: z, x_: img_batch, d_dis_f_: tar_g_0,
d_dis_r_: tar_g_1, is_training_:False})
#loss for decoder
loss_dec_total_ = sess.run(loss_dec_total, feed_dict={z_: z, d_dis_f_: tar_g_1, is_training_:False})
#loss for encoder
loss_enc_total_ = sess.run(loss_enc_total, feed_dict={x_: img_batch, d_dis_r_: tar_g_0, is_training_:False})
#for tensorboard
merged_ = sess.run(merged, feed_dict={z_:z, x_: img_batch, d_dis_f_: tar_g_0, d_dis_r_: tar_g_1, is_training_:False})
summary_writer.add_summary(merged_, epoch)
sum_loss_dis_f += loss_dis_f_
sum_loss_dis_r += loss_dis_r_
sum_loss_dis_total += loss_dis_total_
sum_loss_dec_total += loss_dec_total_
sum_loss_enc_total += loss_enc_total_
print("----------------------------------------------------------------------")
print("epoch = {:}, Encoder Total Loss = {:.4f}, Decoder Total Loss = {:.4f}, Discriminator Total Loss = {:.4f}".format(
epoch, sum_loss_enc_total / len_data, sum_loss_dec_total / len_data, sum_loss_dis_total / len_data))
print("Discriminator Real Loss = {:.4f}, Discriminator Generated Loss = {:.4f}".format(
sum_loss_dis_r / len_data, sum_loss_dis_r / len_data))
if epoch % VALID_SPAN == 0:
# score_A_list = []
score_A_np = np.zeros((0, 2), dtype=np.float32)
val_data_num = len(make_datasets.valid_data)
val_true_data_num = len(make_datasets.valid_true_np)
val_false_data_num = len(make_datasets.valid_false_np)
img_batch_1, _ = make_datasets.get_valid_data_for_1_batch(0, val_true_data_num)
img_batch_0, _ = make_datasets.get_valid_data_for_1_batch(val_data_num - val_false_data_num, val_true_data_num)
x_z_x_1 = sess.run(x_z_x, feed_dict={x_:img_batch_1, is_training_:False})
x_z_x_0 = sess.run(x_z_x, feed_dict={x_:img_batch_0, is_training_:False})
score_A_1 = sess.run(score_A, feed_dict={x_:img_batch_1, is_training_:False})
score_A_0 = sess.run(score_A, feed_dict={x_:img_batch_0, is_training_:False})
score_A_re_1 = np.reshape(score_A_1, (-1, 1))
score_A_re_0 = np.reshape(score_A_0, (-1, 1))
tars_batch_1 = np.ones(val_true_data_num)
tars_batch_0 = np.zeros(val_false_data_num)
tars_batch_re_1 = np.reshape(tars_batch_1, (-1, 1))
tars_batch_re_0 = np.reshape(tars_batch_0, (-1, 1))
score_A_np_1_tmp = np.concatenate((score_A_re_1, tars_batch_re_1), axis=1)
score_A_np_0_tmp = np.concatenate((score_A_re_0, tars_batch_re_0), axis=1)
score_A_np = np.concatenate((score_A_np_1_tmp, score_A_np_0_tmp), axis=0)
#print(score_A_np)
tp, fp, tn, fn, precision, recall = Utility.compute_precision_recall(score_A_np)
auc = Utility.make_ROC_graph(score_A_np, 'out_graph/' + LOGFILE_NAME, epoch)
print("tp:{}, fp:{}, tn:{}, fn:{}, precision:{:.4f}, recall:{:.4f}, AUC:{:.4f}".format(tp, fp, tn, fn, precision, recall, auc))
log_list.append([epoch, auc])
Utility.make_score_hist(score_A_1, score_A_0, epoch, LOGFILE_NAME, OUT_HIST_DIR)
Utility.make_output_img(img_batch_1, img_batch_0, x_z_x_1, x_z_x_0, score_A_0, score_A_1, epoch, LOGFILE_NAME, OUT_IMG_DIR)
#after learning
Utility.save_list_to_csv(log_list, 'log/' + LOGFILE_NAME + '_auc.csv')
#saver2 = tf.train.Saver()
save_path = saver.save(sess, out_model_dir + 'anpanman_weight.ckpt')
print("Model saved in file: ", save_path)
model_BiGAN.py
import numpy as np
# import os
import tensorflow as tf
# from PIL import Image
# import utility as Utility
# import argparse
class BiGAN():
def __init__(self, noise_unit_num, img_channel, seed, base_channel, keep_prob):
self.NOISE_UNIT_NUM = noise_unit_num # 200
self.IMG_CHANNEL = img_channel # 1
self.SEED = seed
np.random.seed(seed=self.SEED)
self.BASE_CHANNEL = base_channel # 32
self.KEEP_PROB = keep_prob
def leaky_relu(self, x, alpha):
return tf.nn.relu(x) - alpha * tf.nn.relu(-x)
def gaussian_noise(self, input, std): #used at discriminator
noise = tf.random_normal(shape=tf.shape(input), mean=0.0, stddev=std, dtype=tf.float32, seed=self.SEED)
return input + noise
def conv2d(self, input, in_channel, out_channel, k_size, stride, seed):
w = tf.get_variable('w', [k_size, k_size, in_channel, out_channel],
initializer=tf.random_normal_initializer
(mean=0.0, stddev=0.02, seed=seed), dtype=tf.float32)
b = tf.get_variable('b', [out_channel], initializer=tf.constant_initializer(0.0))
conv = tf.nn.conv2d(input, w, strides=[1, stride, stride, 1], padding="SAME", name='conv') + b
return conv
def conv2d_transpose(self, input, in_channel, out_channel, k_size, stride, seed):
w = tf.get_variable('w', [k_size, k_size, out_channel, in_channel],
initializer=tf.random_normal_initializer
(mean=0.0, stddev=0.02, seed=seed), dtype=tf.float32)
b = tf.get_variable('b', [out_channel], initializer=tf.constant_initializer(0.0))
out_shape = tf.stack(
[tf.shape(input)[0], tf.shape(input)[1] * 2, tf.shape(input)[2] * 2, tf.constant(out_channel)])
deconv = tf.nn.conv2d_transpose(input, w, output_shape=out_shape, strides=[1, stride, stride, 1],
padding="SAME") + b
return deconv
def batch_norm(self, input):
shape = input.get_shape().as_list()
n_out = shape[-1]
scale = tf.get_variable('scale', [n_out], initializer=tf.constant_initializer(1.0))
beta = tf.get_variable('beta', [n_out], initializer=tf.constant_initializer(0.0))
batch_mean, batch_var = tf.nn.moments(input, [0])
bn = tf.nn.batch_normalization(input, batch_mean, batch_var, beta, scale, 0.0001, name='batch_norm')
return bn
def fully_connect(self, input, in_num, out_num, seed):
w = tf.get_variable('w', [in_num, out_num], initializer=tf.random_normal_initializer
(mean=0.0, stddev=0.02, seed=seed), dtype=tf.float32)
b = tf.get_variable('b', [out_num], initializer=tf.constant_initializer(0.0))
fc = tf.matmul(input, w, name='fc') + b
return fc
def encoder(self, x, reuse=False, is_training=False): #x is expected [n, 28, 28, 1]
with tf.variable_scope('encoder', reuse=reuse):
with tf.variable_scope("layer1"): # layer1 conv nx28x28x1 -> nx14x14x32
conv1 = self.conv2d(x, self.IMG_CHANNEL, self.BASE_CHANNEL, 3, 2, self.SEED)
with tf.variable_scope("layer2"): # layer2 conv nx14x14x32 -> nx7x7x64
conv2 = self.conv2d(conv1, self.BASE_CHANNEL, self.BASE_CHANNEL*2, 3, 2, self.SEED)
bn2 = self.batch_norm(conv2)
lr2 = self.leaky_relu(bn2, alpha=0.1)
with tf.variable_scope("layer3"): # layer3 conv nx7x7x64 -> nx4x4x128
conv3 = self.conv2d(lr2, self.BASE_CHANNEL*2, self.BASE_CHANNEL*4, 3, 2, self.SEED)
bn3 = self.batch_norm(conv3)
lr3 = self.leaky_relu(bn3, alpha=0.1)
with tf.variable_scope("layer4"): # layer4 fc nx4x4x128 -> nx200
shape = tf.shape(lr3)
print(shape[1])
reshape4 = tf.reshape(lr3, [shape[0], shape[1]*shape[2]*shape[3]])
fc4 = self.fully_connect(reshape4, 21632, self.NOISE_UNIT_NUM, self.SEED)
return fc4
def decoder(self, z, reuse=False, is_training=False): # z is expected [n, 200]
with tf.variable_scope('decoder', reuse=reuse):
with tf.variable_scope("layer1"): # layer1 fc nx200 -> nx1024
fc1 = self.fully_connect(z, self.NOISE_UNIT_NUM, 1024, self.SEED)
bn1 = self.batch_norm(fc1)
rl1 = tf.nn.relu(bn1)
with tf.variable_scope("layer2"): # layer2 fc nx1024 -> nx6272
fc2 = self.fully_connect(rl1, 1024, 25*25*self.BASE_CHANNEL*4, self.SEED)
bn2 = self.batch_norm(fc2)
rl2 = tf.nn.relu(bn2)
with tf.variable_scope("layer3"): # layer3 deconv nx6272 -> nx7x7x128 -> nx14x14x64
shape = tf.shape(rl2)
reshape3 = tf.reshape(rl2, [shape[0], 25, 25, 128])
deconv3 = self.conv2d_transpose(reshape3, self.BASE_CHANNEL*4, self.BASE_CHANNEL*2, 4, 2, self.SEED)
bn3 = self.batch_norm(deconv3)
rl3 = tf.nn.relu(bn3)
with tf.variable_scope("layer4"): # layer3 deconv nx14x14x64 -> nx28x28x1
deconv4 = self.conv2d_transpose(rl3, self.BASE_CHANNEL*2, self.IMG_CHANNEL, 4, 2, self.SEED)
tanh4 = tf.tanh(deconv4)
return tanh4
def discriminator(self, x, z, reuse=False, is_training=True): #z[n, 200], x[n, 28, 28, 1]
with tf.variable_scope('discriminator', reuse=reuse):
with tf.variable_scope("x_layer1"): # layer x1 conv [n, 28, 28, 1] -> [n, 14, 14, 64]
convx1 = self.conv2d(x, self.IMG_CHANNEL, self.BASE_CHANNEL*2, 4, 2, self.SEED)
lrx1 = self.leaky_relu(convx1, alpha=0.1)
dropx1 = tf.layers.dropout(lrx1, rate=1.0 - self.KEEP_PROB, name='dropout', training=is_training)
with tf.variable_scope("x_layer2"): # layer x2 conv [n, 14, 14, 64] -> [n, 7, 7, 64] -> [n, 3136]
convx2 = self.conv2d(dropx1, self.BASE_CHANNEL*2, self.BASE_CHANNEL*2, 4, 2, self.SEED)
bnx2 = self.batch_norm(convx2)
lrx2 = self.leaky_relu(bnx2, alpha=0.1)
dropx2 = tf.layers.dropout(lrx2, rate=1.0 - self.KEEP_PROB, name='dropout', training=is_training)
shapex2 = tf.shape(dropx2)
reshape3 = tf.reshape(dropx2, [shapex2[0], shapex2[1]*shapex2[2]*shapex2[3]])
with tf.variable_scope("z_layer1"): # layer1 fc [n, 200] -> [n, 512]
fcz1 = self.fully_connect(z, self.NOISE_UNIT_NUM, 512, self.SEED)
lrz1 = self.leaky_relu(fcz1, alpha=0.1)
dropz1 = tf.layers.dropout(lrz1, rate=1.0 - self.KEEP_PROB, name='dropout', training=is_training)
with tf.variable_scope("y_layer3"): # layer1 fc [n, 6272], [n, 1024]
con3 = tf.concat([reshape3, dropz1], axis=1)
fc3 = self.fully_connect(con3, 40000+512, 1024, self.SEED)
lr3 = self.leaky_relu(fc3, alpha=0.1)
self.drop3 = tf.layers.dropout(lr3, rate=1.0 - self.KEEP_PROB, name='dropout', training=is_training)
with tf.variable_scope("y_fc_logits"):
self.logits = self.fully_connect(self.drop3, 1024, 1, self.SEED)
return self.drop3, self.logits
make_datasets_TRAIN.py
import numpy as np
import os
import glob
import re
import random
#import cv2
from PIL import Image
from keras.preprocessing import image
class Make_datasets_TRAIN():
def __init__(self, filename, true_data, false_data, img_width, img_height, seed):
self.filename = filename
self.true_data = true_data
self.false_data = false_data
self.img_width = img_width
self.img_height = img_height
self.seed = seed
x_train, x_valid_true, x_valid_false, y_train, y_valid_true, y_valid_false = self.read_DATASET(self.filename, self.true_data, self.false_data)
self.train_np = np.concatenate((y_train.reshape(-1,1), x_train), axis=1).astype(np.float32)
self.valid_true_np = np.concatenate((y_valid_true.reshape(-1,1), x_valid_true), axis=1).astype(np.float32)
self.valid_false_np = np.concatenate((y_valid_false.reshape(-1,1), x_valid_false), axis=1).astype(np.float32)
print("self.train_np.shape, ", self.train_np.shape)
print("self.valid_true_np.shape, ", self.valid_true_np.shape)
print("self.valid_false_np.shape, ", self.valid_false_np.shape)
print("np.max(x_train), ", np.max(x_train))
print("np.min(x_train), ", np.min(x_train))
self.valid_data = np.concatenate((self.valid_true_np, self.valid_false_np))
random.seed(self.seed)
np.random.seed(self.seed)
def read_DATASET(self, train_path, true_path, false_path):
train_list = os.listdir(train_path)
y_train = np.ones(len(train_list))
x_train = np.empty((0, self.img_width*self.img_height))
for img in train_list:
path_name = train_path+img
x_img = Image.open(path_name)
#Align the size
x_img = x_img.resize((self.img_width, self.img_height))
#Convert 3ch to 1ch
x_img= x_img.convert('L')
# PIL.Image.From Image to numpy array
x_img = np.array(x_img)
#Normalization
x_img = x_img / 255.0
#Add axis
x_img = x_img.reshape((1,self.img_width, self.img_height))
# flatten
x_img = x_img.reshape(1, self.img_width*self.img_height)
x_train = np.concatenate([x_train, x_img], axis = 0)
print("x_train.shape, ", x_train.shape)
print("y_train.shape, ", y_train.shape)
test_true_list = os.listdir(true_path)
y_test_true = np.ones(len(test_true_list))
x_test_true = np.empty((0, self.img_width*self.img_height))
for img in test_true_list:
path_name = true_path+img
x_img = Image.open(path_name)
x_img = x_img.resize((self.img_width, self.img_height))
x_img= x_img.convert('L')
x_img = np.array(x_img)
x_img = x_img / 255.0
x_img = x_img.reshape((1,self.img_width, self.img_height))
x_img = x_img.reshape(1, self.img_width*self.img_height)
x_test_true = np.concatenate([x_test_true, x_img], axis = 0)
print("x_test_true.shape, ", x_test_true.shape)
print("y_test_true.shape, ", y_test_true.shape)
test_false_list = os.listdir(false_path)
y_test_false = np.zeros(len(test_false_list))
x_test_false = np.empty((0, self.img_width*self.img_height))
for img in test_false_list:
path_name = false_path+img
x_img = Image.open(path_name)
x_img = x_img.resize((self.img_width, self.img_height))
x_img= x_img.convert('L')
x_img = np.array(x_img)
x_img = x_img / 255.0
x_img = x_img.reshape((1,self.img_width, self.img_height))
x_img = x_img.reshape(1, self.img_width*self.img_height)
x_test_false = np.concatenate([x_test_false, x_img], axis = 0)
print("x_test_false.shape, ", x_test_false.shape)
print("y_test_false.shape, ", y_test_false.shape)
return x_train, x_test_true, x_test_false, y_train, y_test_true, y_test_false
def get_file_names(self, dir_name):
target_files = []
for root, dirs, files in os.walk(dir_name):
targets = [os.path.join(root, f) for f in files]
target_files.extend(targets)
return target_files
def read_data(self, d_y_np, width, height):
tars = []
images = []
for num, d_y_1 in enumerate(d_y_np):
image = d_y_1[1:].reshape(width, height, 1)
tar = d_y_1[0]
images.append(image)
tars.append(tar)
return np.asarray(images), np.asarray(tars)
def normalize_data(self, data):
# data0_2 = data / 127.5
# data_norm = data0_2 - 1.0
data_norm = (data * 2.0) - 1.0 #applied for tanh
return data_norm
def make_data_for_1_epoch(self):
self.filename_1_epoch = np.random.permutation(self.train_np)
return len(self.filename_1_epoch)
def get_data_for_1_batch(self, i, batchsize):
filename_batch = self.filename_1_epoch[i:i + batchsize]
images, _ = self.read_data(filename_batch, self.img_width, self.img_height)
images_n = self.normalize_data(images)
return images_n
def get_valid_data_for_1_batch(self, i, batchsize):
filename_batch = self.valid_data[i:i + batchsize]
images, tars = self.read_data(filename_batch, self.img_width, self.img_height)
images_n = self.normalize_data(images)
return images_n, tars
def make_random_z_with_norm(self, mean, stddev, data_num, unit_num):
norms = np.random.normal(mean, stddev, (data_num, unit_num))
# tars = np.zeros((data_num, 1), dtype=np.float32)
return norms
def make_target_1_0(self, value, data_num):
if value == 0.0:
target = np.zeros((data_num, 1), dtype=np.float32)
elif value == 1.0:
target = np.ones((data_num, 1), dtype=np.float32)
else:
print("target value error")
return target
utility.py
import numpy as np
# import os
from PIL import Image
import matplotlib.pyplot as plt
import sklearn.metrics as sm
import csv
import seaborn as sns
def compute_precision_recall(score_A_np, ):
array_1 = np.where(score_A_np[:, 1] == 1.0)
array_0 = np.where(score_A_np[:, 1] == 0.0)
mean_1 = np.mean((score_A_np[array_1])[:, 0])
mean_0 = np.mean((score_A_np[array_0])[:, 0])
medium = (mean_1 + mean_0) / 2.0
print("mean_positive_score, ", mean_1)
print("mean_negative_score, ", mean_0)
print("score_threshold(pos_neg middle), ", medium)
np.save('./score_threshold.npy', medium)
array_upper = np.where(score_A_np[:, 0] >= medium)[0]
array_lower = np.where(score_A_np[:, 0] < medium)[0]
#print(array_upper)
print("negative_predict_num, ", array_upper.shape)
print("positive_predict_num, ", array_lower.shape)
array_1_tf = np.where(score_A_np[:, 1] == 1.0)[0]
array_0_tf = np.where(score_A_np[:, 1] == 0.0)[0]
#print(array_1_tf)
print("negative_fact_num, ", array_0_tf.shape)
print("positive_fact_num, ", array_1_tf.shape)
tn = len(set(array_lower)&set(array_1_tf))
tp = len(set(array_upper)&set(array_0_tf))
fp = len(set(array_lower)&set(array_0_tf))
fn = len(set(array_upper)&set(array_1_tf))
precision = tp / (tp + fp + 0.00001)
recall = tp / (tp + fn + 0.00001)
return tp, fp, tn, fn, precision, recall
def score_divide(score_A_np):
array_1 = np.where(score_A_np[:, 1] == 1.0)[0]
array_0 = np.where(score_A_np[:, 1] == 0.0)[0]
print("positive_predict_num, ", array_1.shape)
print("negative_predict_num, ", array_0.shape)
array_1_np = score_A_np[array_1][:, 0]
array_0_np = score_A_np[array_0][:, 0]
#print(array_1_np)
#print(array_0_np)
return array_1_np, array_0_np
def save_graph(x, y, filename, epoch):
plt.figure(figsize=(7, 5))
plt.plot(x, y)
plt.title('ROC curve ' + filename + ' epoch:' + str(epoch))
# x axis label
plt.xlabel("FP / (FP + TN)")
# y axis label
plt.ylabel("TP / (TP + FN)")
# save
plt.savefig(filename + '_ROC_curve_epoch' + str(epoch) +'.png')
plt.close()
def make_ROC_graph(score_A_np, filename, epoch):
argsort = np.argsort(score_A_np, axis=0)[:, 0]
value_1_0 = score_A_np[argsort][::-1].astype(np.float32)
#value_1_0 = (np.where(score_A_np_sort[:, 1] == 7., 1., 0.)).astype(np.float32)
# score_A_np_sort_0_1 = np.concatenate((score_A_np_sort, value_1_0), axis=1)
sum_1 = np.sum(value_1_0)
len_s = len(score_A_np)
sum_0 = len_s - sum_1
tp = np.cumsum(value_1_0[:, 1]).astype(np.float32)
index = np.arange(1, len_s + 1, 1).astype(np.float32)
fp = index - tp
fn = sum_1 - tp
tn = sum_0 - fp
tp_ratio = tp / (tp + fn + 0.00001)
fp_ratio = fp / (fp + tn + 0.00001)
save_graph(fp_ratio, tp_ratio, filename, epoch)
auc = sm.auc(fp_ratio, tp_ratio)
return auc
def unnorm_img(img_np):
img_np_255 = (img_np + 1.0) * 127.5
img_np_255_mod1 = np.maximum(img_np_255, 0)
img_np_255_mod1 = np.minimum(img_np_255_mod1, 255)
img_np_uint8 = img_np_255_mod1.astype(np.uint8)
return img_np_uint8
def convert_np2pil(images_255):
list_images_PIL = []
for num, images_255_1 in enumerate(images_255):
# img_255_tile = np.tile(images_255_1, (1, 1, 3))
image_1_PIL = Image.fromarray(images_255_1)
list_images_PIL.append(image_1_PIL)
return list_images_PIL
def make_score_hist(score_a_1, score_a_0, epoch, LOGFILE_NAME, OUT_HIST_DIR):
list_1 = score_a_1.tolist()
list_0 = score_a_0.tolist()
#print(list_1)
#print(list_0)
plt.figure(figsize=(7, 5))
plt.title("Histgram of Score")
plt.xlabel("Score")
plt.ylabel("freq")
plt.hist(list_1, bins=40, alpha=0.3, histtype='stepfilled', color='r', label="1")
plt.hist(list_0, bins=40, alpha=0.3, histtype='stepfilled', color='b', label='0')
plt.legend(loc=1)
plt.savefig(OUT_HIST_DIR + "/resultScoreHist_"+ LOGFILE_NAME + '_' + str(epoch) + ".png ")
plt.show()
def make_score_hist_test(score_a_1, score_a_0, score_th, LOGFILE_NAME, OUT_HIST_DIR):
list_1 = score_a_1.tolist()
list_0 = score_a_0.tolist()
#print(list_1)
#print(list_0)
plt.figure(figsize=(7, 5))
plt.title("Histgram of Score")
plt.xlabel("Score")
plt.ylabel("freq")
plt.hist(list_1, bins=40, alpha=0.3, histtype='stepfilled', color='r', label="1")
plt.hist(list_0, bins=40, alpha=0.3, histtype='stepfilled', color='b', label='0')
plt.legend(loc=1)
plt.savefig(OUT_HIST_DIR + "/resultScoreHist_"+ LOGFILE_NAME + "_test.png ")
plt.show()
def make_score_bar(score_a):
score_a = score_a.tolist()
list_images_PIL = []
for score in score_a:
x="score"
plt.bar(x,score,label=score)
fig, ax = plt.subplots(figsize=(1, 1))
ax.bar(x,score,label=round(score,3))
ax.legend(loc='center', fontsize=12)
fig.canvas.draw()
#im = np.array(fig.canvas.renderer.buffer_rgba()) #matplotlib is 3.After 1
im = np.array(fig.canvas.renderer._renderer)
image_1_PIL = Image.fromarray(im)
list_images_PIL.append(image_1_PIL)
return list_images_PIL
def make_score_bar_predict(score_A_np_tmp):
score_a = score_A_np_tmp.tolist()
list_images_PIL = []
for score in score_a:
x="score"
#plt.bar(x,score[0],label=score)
fig, ax = plt.subplots(figsize=(1, 1))
if score[1]==0:
ax.bar(x,score[0], color='red',label=round(score[0],3))
else:
ax.bar(x,score[0], color='blue',label=round(score[0],3))
ax.legend(loc='center', fontsize=12)
fig.canvas.draw()
#im = np.array(fig.canvas.renderer.buffer_rgba()) #matplotlib is 3.After 1
im = np.array(fig.canvas.renderer._renderer)
image_1_PIL = Image.fromarray(im)
list_images_PIL.append(image_1_PIL)
return list_images_PIL
def make_output_img(img_batch_1, img_batch_0, x_z_x_1, x_z_x_0, score_a_0, score_a_1, epoch, log_file_name, out_img_dir):
(data_num, img1_h, img1_w, _) = img_batch_1.shape
img_batch_1_unn = np.tile(unnorm_img(img_batch_1), (1, 1, 3))
img_batch_0_unn = np.tile(unnorm_img(img_batch_0), (1, 1, 3))
x_z_x_1_unn = np.tile(unnorm_img(x_z_x_1), (1, 1, 3))
x_z_x_0_unn = np.tile(unnorm_img(x_z_x_0), (1, 1, 3))
diff_1 = img_batch_1 - x_z_x_1
diff_1_r = (2.0 * np.maximum(diff_1, 0.0)) - 1.0 #(0.0, 1.0) -> (-1.0, 1.0)
diff_1_b = (2.0 * np.abs(np.minimum(diff_1, 0.0))) - 1.0 #(-1.0, 0.0) -> (1.0, 0.0) -> (1.0, -1.0)
diff_1_g = diff_1_b * 0.0 - 1.0
diff_1_r_unnorm = unnorm_img(diff_1_r)
diff_1_b_unnorm = unnorm_img(diff_1_b)
diff_1_g_unnorm = unnorm_img(diff_1_g)
diff_1_np = np.concatenate((diff_1_r_unnorm, diff_1_g_unnorm, diff_1_b_unnorm), axis=3)
diff_0 = img_batch_0 - x_z_x_0
diff_0_r = (2.0 * np.maximum(diff_0, 0.0)) - 1.0 #(0.0, 1.0) -> (-1.0, 1.0)
diff_0_b = (2.0 * np.abs(np.minimum(diff_0, 0.0))) - 1.0 #(-1.0, 0.0) -> (1.0, 0.0) -> (1.0, -1.0)
diff_0_g = diff_0_b * 0.0 - 1.0
diff_0_r_unnorm = unnorm_img(diff_0_r)
diff_0_b_unnorm = unnorm_img(diff_0_b)
diff_0_g_unnorm = unnorm_img(diff_0_g)
diff_0_np = np.concatenate((diff_0_r_unnorm, diff_0_g_unnorm, diff_0_b_unnorm), axis=3)
img_batch_1_PIL = convert_np2pil(img_batch_1_unn)
img_batch_0_PIL = convert_np2pil(img_batch_0_unn)
x_z_x_1_PIL = convert_np2pil(x_z_x_1_unn)
x_z_x_0_PIL = convert_np2pil(x_z_x_0_unn)
diff_1_PIL = convert_np2pil(diff_1_np)
diff_0_PIL = convert_np2pil(diff_0_np)
score_a_1_PIL = make_score_bar(score_a_1)
score_a_0_PIL = make_score_bar(score_a_0)
wide_image_np = np.ones(((img1_h + 1) * data_num - 1, (img1_w + 1) * 8 - 1, 3), dtype=np.uint8) * 255
wide_image_PIL = Image.fromarray(wide_image_np)
for num, (ori_1, ori_0, xzx1, xzx0, diff1, diff0, score_1, score_0) in enumerate(zip(img_batch_1_PIL, img_batch_0_PIL ,x_z_x_1_PIL, x_z_x_0_PIL, diff_1_PIL, diff_0_PIL, score_a_1_PIL, score_a_0_PIL)):
wide_image_PIL.paste(ori_1, (0, num * (img1_h + 1)))
wide_image_PIL.paste(xzx1, (img1_w + 1, num * (img1_h + 1)))
wide_image_PIL.paste(diff1, ((img1_w + 1) * 2, num * (img1_h + 1)))
wide_image_PIL.paste(score_1, ((img1_w + 1) * 3, num * (img1_h + 1)))
wide_image_PIL.paste(ori_0, ((img1_w + 1) * 4, num * (img1_h + 1)))
wide_image_PIL.paste(xzx0, ((img1_w + 1) * 5, num * (img1_h + 1)))
wide_image_PIL.paste(diff0, ((img1_w + 1) * 6, num * (img1_h + 1)))
wide_image_PIL.paste(score_0, ((img1_w + 1) * 7, num * (img1_h + 1)))
wide_image_PIL.save(out_img_dir + "/resultImage_"+ log_file_name + '_' + str(epoch) + ".png ")
def make_output_img_test(img_batch_test, x_z_x_test, score_A_np_tmp, log_file_name, out_img_dir):
(data_num, img1_h, img1_w, _) = img_batch_test.shape
img_batch_test_unn = np.tile(unnorm_img(img_batch_test), (1, 1, 3))
x_z_x_test_unn = np.tile(unnorm_img(x_z_x_test), (1, 1, 3))
diff_test = img_batch_test - x_z_x_test
diff_test_r = (2.0 * np.maximum(diff_test, 0.0)) - 1.0 #(0.0, 1.0) -> (-1.0, 1.0)
diff_test_b = (2.0 * np.abs(np.minimum(diff_test, 0.0))) - 1.0 #(-1.0, 0.0) -> (1.0, 0.0) -> (1.0, -1.0)
diff_test_g = diff_test_b * 0.0 - 1.0
diff_test_r_unnorm = unnorm_img(diff_test_r)
diff_test_b_unnorm = unnorm_img(diff_test_b)
diff_test_g_unnorm = unnorm_img(diff_test_g)
diff_test_np = np.concatenate((diff_test_r_unnorm, diff_test_g_unnorm, diff_test_b_unnorm), axis=3)
img_batch_test_PIL = convert_np2pil(img_batch_test_unn)
x_z_x_test_PIL = convert_np2pil(x_z_x_test_unn)
diff_test_PIL = convert_np2pil(diff_test_np)
score_a = score_A_np_tmp[:, 1:]
#tars = score_A_np_tmp[:, 0]
score_a_PIL = make_score_bar_predict(score_A_np_tmp)
wide_image_np = np.ones(((img1_h + 1) * data_num - 1, (img1_w + 1) * 8 - 1, 3), dtype=np.uint8) * 255
wide_image_PIL = Image.fromarray(wide_image_np)
for num, (ori_test, xzx_test, diff_test, score_test) in enumerate(zip(img_batch_test_PIL, x_z_x_test_PIL, diff_test_PIL, score_a_PIL)):
wide_image_PIL.paste(ori_test, (0, num * (img1_h + 1)))
wide_image_PIL.paste(xzx_test, (img1_w + 1, num * (img1_h + 1)))
wide_image_PIL.paste(diff_test, ((img1_w + 1) * 2, num * (img1_h + 1)))
wide_image_PIL.paste(score_test, ((img1_w + 1) * 3, num * (img1_h + 1)))
wide_image_PIL.save(out_img_dir + "/resultImage_"+ log_file_name + "_test.png ")
def save_list_to_csv(list, filename):
f = open(filename, 'w')
writer = csv.writer(f, lineterminator='\n')
writer.writerows(list)
f.close()
predict_BiGAN.py
import numpy as np
import os
import tensorflow as tf
import utility as Utility
import argparse
import matplotlib.pyplot as plt
from model_BiGAN import BiGAN as Model
from make_datasets_predict import Make_datasets_predict as Make_datasets
def parser():
parser = argparse.ArgumentParser(description='train LSGAN')
parser.add_argument('--batch_size', '-b', type=int, default=300, help='Number of images in each mini-batch')
parser.add_argument('--log_file_name', '-lf', type=str, default='anpanman', help='log file name')
parser.add_argument('--epoch', '-e', type=int, default=1, help='epoch')
#parser.add_argument('--file_train_data', '-ftd', type=str, default='./mnist.npz', help='train data')
#parser.add_argument('--test_true_data', '-ttd', type=str, default='./mnist.npz', help='test of true_data')
#parser.add_argument('--test_false_data', '-tfd', type=str, default='./mnist.npz', help='test of false_data')
parser.add_argument('--test_data', '-td', type=str, default='../Test_Data/200112/', help='test of false_data')
parser.add_argument('--valid_span', '-vs', type=int, default=1, help='validation span')
parser.add_argument('--score_th', '-st', type=float, default=np.load('./score_threshold.npy'), help='validation span')
return parser.parse_args()
args = parser()
#global variants
BATCH_SIZE = args.batch_size
LOGFILE_NAME = args.log_file_name
EPOCH = args.epoch
#FILE_NAME = args.file_train_data
#TRUE_DATA = args.test_true_data
#FALSE_DATA = args.test_false_data
TEST_DATA = args.test_data
IMG_WIDTH = 100
IMG_HEIGHT = 100
IMG_CHANNEL = 1
BASE_CHANNEL = 32
NOISE_UNIT_NUM = 200
NOISE_MEAN = 0.0
NOISE_STDDEV = 1.0
TEST_DATA_SAMPLE = 5 * 5
L2_NORM = 0.001
KEEP_PROB_RATE = 0.5
SEED = 1234
SCORE_ALPHA = 0.9 # using for cost function
VALID_SPAN = args.valid_span
np.random.seed(seed=SEED)
BOARD_DIR_NAME = './tensorboard/' + LOGFILE_NAME
OUT_IMG_DIR = './out_images_BiGAN' #output image file
out_model_dir = './out_models_BiGAN/' #output model_ckpt file
#Load_model_dir = '../model_ckpt/' #Load model_ckpt file
OUT_HIST_DIR = './out_score_hist_BiGAN' #output histogram file
CYCLE_LAMBDA = 1.0
SCORE_TH = args.score_th
make_datasets = Make_datasets(TEST_DATA, IMG_WIDTH, IMG_HEIGHT, SEED)
model = Model(NOISE_UNIT_NUM, IMG_CHANNEL, SEED, BASE_CHANNEL, KEEP_PROB_RATE)
z_ = tf.placeholder(tf.float32, [None, NOISE_UNIT_NUM], name='z_') #noise to generator
x_ = tf.placeholder(tf.float32, [None, IMG_HEIGHT, IMG_WIDTH, IMG_CHANNEL], name='x_') #image to classifier
d_dis_f_ = tf.placeholder(tf.float32, [None, 1], name='d_dis_g_') #target of discriminator related to generator
d_dis_r_ = tf.placeholder(tf.float32, [None, 1], name='d_dis_r_') #target of discriminator related to real image
is_training_ = tf.placeholder(tf.bool, name = 'is_training')
with tf.variable_scope('encoder_model'):
z_enc = model.encoder(x_, reuse=False, is_training=is_training_)
with tf.variable_scope('decoder_model'):
x_dec = model.decoder(z_, reuse=False, is_training=is_training_)
x_z_x = model.decoder(z_enc, reuse=True, is_training=is_training_) # for cycle consistency
with tf.variable_scope('discriminator_model'):
#stream around discriminator
drop3_r, logits_r = model.discriminator(x_, z_enc, reuse=False, is_training=is_training_) #real pair
drop3_f, logits_f = model.discriminator(x_dec, z_, reuse=True, is_training=is_training_) #real pair
drop3_re, logits_re = model.discriminator(x_z_x, z_enc, reuse=True, is_training=is_training_) #fake pair
with tf.name_scope("loss"):
loss_dis_f = tf.reduce_mean(tf.square(logits_f - d_dis_f_), name='Loss_dis_gen') #loss related to generator
loss_dis_r = tf.reduce_mean(tf.square(logits_r - d_dis_r_), name='Loss_dis_rea') #loss related to real image
#total loss
loss_dis_total = loss_dis_f + loss_dis_r
loss_dec_total = loss_dis_f
loss_enc_total = loss_dis_r
with tf.name_scope("score"):
l_g = tf.reduce_mean(tf.abs(x_ - x_z_x), axis=(1,2,3))
l_FM = tf.reduce_mean(tf.abs(drop3_r - drop3_re), axis=1)
score_A = SCORE_ALPHA * l_g + (1.0 - SCORE_ALPHA) * l_FM
with tf.name_scope("optional_loss"):
loss_dec_opt = loss_dec_total + CYCLE_LAMBDA * l_g
loss_enc_opt = loss_enc_total + CYCLE_LAMBDA * l_g
tf.summary.scalar('loss_dis_total', loss_dis_total)
tf.summary.scalar('loss_dec_total', loss_dec_total)
tf.summary.scalar('loss_enc_total', loss_enc_total)
merged = tf.summary.merge_all()
# t_vars = tf.trainable_variables()
dec_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope="decoder")
enc_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope="encoder")
dis_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope="discriminator")
with tf.name_scope("train"):
train_dis = tf.train.AdamOptimizer(learning_rate=0.00005, beta1=0.5).minimize(loss_dis_total, var_list=dis_vars
, name='Adam_dis')
train_dec = tf.train.AdamOptimizer(learning_rate=0.005, beta1=0.5).minimize(loss_dec_total, var_list=dec_vars
, name='Adam_dec')
train_enc = tf.train.AdamOptimizer(learning_rate=0.005, beta1=0.5).minimize(loss_enc_total, var_list=enc_vars
, name='Adam_enc')
train_dec_opt = tf.train.AdamOptimizer(learning_rate=0.005, beta1=0.5).minimize(loss_dec_opt, var_list=dec_vars
, name='Adam_dec')
train_enc_opt = tf.train.AdamOptimizer(learning_rate=0.005, beta1=0.5).minimize(loss_enc_opt, var_list=enc_vars
, name='Adam_enc')
sess = tf.Session()
ckpt = tf.train.get_checkpoint_state(out_model_dir)
saver = tf.train.Saver()
if ckpt: #If there is a checkpoint
last_model = ckpt.model_checkpoint_path #Path to the last saved model
saver.restore(sess, last_model) #Reading variable data
print("load " + last_model)
else: #When there is no saved data
#init = tf.initialize_all_variables()
sess.run(tf.global_variables_initializer())
summary_writer = tf.summary.FileWriter(BOARD_DIR_NAME, sess.graph)
log_list = []
log_list.append(['epoch', 'AUC'])
#training loop
for epoch in range(1):
if epoch % VALID_SPAN == 0:
score_A_np = np.zeros((0, 2), dtype=np.float32)
val_data_num = len(make_datasets.valid_data)
img_batch_test = make_datasets.get_valid_data_for_1_batch(0, val_data_num)
score_A_ = sess.run(score_A, feed_dict={x_:img_batch_test, is_training_:False})
score_A_re = np.reshape(score_A_, (-1, 1))
tars_batch_re = np.where(score_A_re < SCORE_TH, 1, 0) #np.reshape(tars_batch, (-1, 1))
score_A_np_tmp = np.concatenate((score_A_re, tars_batch_re), axis=1)
x_z_x_test = sess.run(x_z_x, feed_dict={x_:img_batch_test, is_training_:False})
#print(score_A_np_tmp)
array_1_np, array_0_np = Utility.score_divide(score_A_np_tmp)
Utility.make_score_hist_test(array_1_np, array_0_np, SCORE_TH, LOGFILE_NAME, OUT_HIST_DIR)
Utility.make_output_img_test(img_batch_test, x_z_x_test, score_A_np_tmp, LOGFILE_NAME, OUT_IMG_DIR)
make_datasets_predict.py
import numpy as np
import os
import glob
import re
import random
#import cv2
from PIL import Image
from keras.preprocessing import image
class Make_datasets_predict():
def __init__(self, test_data, img_width, img_height, seed):
self.filename = test_data
self.img_width = img_width
self.img_height = img_height
self.seed = seed
x_test = self.read_DATASET(self.filename)
self.valid_data = x_test
random.seed(self.seed)
np.random.seed(self.seed)
def read_DATASET(self, test_path):
test_list = os.listdir(test_path)
x_test = np.empty((0, self.img_width*self.img_height))
for img in test_list:
path_name = test_path+img
x_img = Image.open(path_name)
#Align the size
x_img = x_img.resize((self.img_width, self.img_height))
#Convert 3ch to 1ch
x_img= x_img.convert('L')
# PIL.Image.From Image to numpy array
x_img = np.array(x_img)
#Normalization
x_img = x_img / 255.0
#Add axis
x_img = x_img.reshape((1,self.img_width, self.img_height))
# flatten
x_img = x_img.reshape(1, self.img_width*self.img_height)
x_test = np.concatenate([x_test, x_img], axis = 0)
print("x_test.shape, ", x_test.shape)
return x_test
def get_file_names(self, dir_name):
target_files = []
for root, dirs, files in os.walk(dir_name):
targets = [os.path.join(root, f) for f in files]
target_files.extend(targets)
return target_files
def divide_MNIST_by_digit(self, train_np, data1_num, data2_num):
data_1 = train_np[train_np[:,0] == data1_num]
data_2 = train_np[train_np[:,0] == data2_num]
return data_1, data_2
def read_data(self, d_y_np, width, height):
#tars = []
images = []
for num, d_y_1 in enumerate(d_y_np):
image = d_y_1.reshape(width, height, 1)
#tar = d_y_1[0]
images.append(image)
#tars.append(tar)
return np.asarray(images)#, np.asarray(tars)
def normalize_data(self, data):
# data0_2 = data / 127.5
# data_norm = data0_2 - 1.0
data_norm = (data * 2.0) - 1.0 #applied for tanh
return data_norm
def make_data_for_1_epoch(self):
self.filename_1_epoch = np.random.permutation(self.train_np)
return len(self.filename_1_epoch)
def get_data_for_1_batch(self, i, batchsize):
filename_batch = self.filename_1_epoch[i:i + batchsize]
images, _ = self.read_data(filename_batch, self.img_width, self.img_height)
images_n = self.normalize_data(images)
return images_n
def get_valid_data_for_1_batch(self, i, batchsize):
filename_batch = self.valid_data[i:i + batchsize]
images = self.read_data(filename_batch, self.img_width, self.img_height)
images_n = self.normalize_data(images)
return images_n#, tars
def make_random_z_with_norm(self, mean, stddev, data_num, unit_num):
norms = np.random.normal(mean, stddev, (data_num, unit_num))
# tars = np.zeros((data_num, 1), dtype=np.float32)
return norms
def make_target_1_0(self, value, data_num):
if value == 0.0:
target = np.zeros((data_num, 1), dtype=np.float32)
elif value == 1.0:
target = np.ones((data_num, 1), dtype=np.float32)
else:
print("target value error")
return target
https://github.com/YousukeAnai/Dic_Graduation_Assignment
https://qiita.com/masataka46/items/49dba2790fa59c29126b https://qiita.com/underfitting/items/a0cbb035568dea33b2d7
Recommended Posts