VAEGAN at TF Learn

What is VAEGAN

Autoencoding beyond pixels using a learned similarity metric

VAE with GAN Discriminator behind Use the feature map extracted from the middle layer of Discriminator instead of the image generated by Decoder for VAE error. While VAE measures the error in pixel units, blurry images appear, but by measuring the error in feature map units, it may be possible to generate fine images while reproducing global features.

Encoder learns the difference between the feature map of the original image and the decoded image as an error (VAE) In addition to that, Decoder learns the discrimination result of the decoded image / randomly generated image by Discriminator as an error (VAE + GAN). Discriminator learns from the identification results of original images, decoded images, and randomly generated images (GAN)

It seems good to pre-learn VAE with normal pixel units and GAN with original image and randomly generated image (replace GAN Generator with VAE Decoder and learn both independently)

I'm still experimenting, so I may change it later.

code

In the case of DCGAN, I tried my best to bring it to the original implementation, but this time I finished with a simplified version where each of Encoder, Decoder, Discriminator is trained with different samples

I referred to the original paper and the implementation of others, but made some changes.

--VAE and GAN were trained at the same time in Pretraining, but VAE → GAN are trained in order. --In Mean Square and Kullback Leibler Divergence, the dimensions of Feature and so on were summed (Sum), and the dimensions of Sample were averaged (Mean), but when I changed the image size and latent variables, the ratio changed and I felt it was troublesome. So all changed to Mean (may be mathematically wrong) --Decoder Loss was changed from Encoder Loss + Discriminator Loss to the average of both

vaegan.py


from __future__ import (
    division,
    print_function,
    absolute_import
)
from six.moves import range

import tensorflow as tf
import tflearn

import os
import numpy as np
from skimage import io

PRE_VAE_TENSORBOARD_DIR = '/tmp/tflearn_logs/vae/'
PRE_DIS_TENSORBOARD_DIR = '/tmp/tflearn_logs/dis/'
PRE_VAE_CHECKPOINT_PATH = '/tmp/vaegan/pre-vae'
PRE_DIS_CHECKPOINT_PATH = '/tmp/vaegan/pre-dis'
CHECKPOINT_PATH = '/tmp/vaegan/model'

DNN = tflearn.DNN
input_data = tflearn.input_data
fc = tflearn.fully_connected
reshape = tflearn.reshape
conv = tflearn.conv_2d
conv_t = tflearn.conv_2d_transpose
max_pool = tflearn.max_pool_2d
bn = tflearn.batch_normalization
merge = tflearn.merge
sigmoid = tflearn.sigmoid
softmax = tflearn.softmax
softplus = tflearn.softplus
relu = tflearn.relu
elu = tflearn.elu
crossentropy = tflearn.categorical_crossentropy
adam = tflearn.Adam
Trainer = tflearn.Trainer
TrainOp = tflearn.TrainOp

if not os.path.exists('/tmp/tflearn_logs'):
    os.mkdir('/tmp/tflearn_logs')
if not os.path.exists(PRE_VAE_TENSORBOARD_DIR):
    os.mkdir(PRE_VAE_TENSORBOARD_DIR)
if not os.path.exists(PRE_DIS_TENSORBOARD_DIR):
    os.mkdir(PRE_DIS_TENSORBOARD_DIR)
if not os.path.exists('/tmp/vaegan/'):
    os.mkdir('/tmp/vaegan/')

class VAEGAN(object):
    def __init__(self, img_shape, n_first_channel, n_layer, latent_dim,
                 kullback_leibler_ratio, reconstruction_weight_against_detail,
                 vae_learning_rate=0.001, vae_beta1=0.5,
                 discriminator_learning_rate=0.00001, discriminator_beta1=0.5):
        self.img_shape = list(img_shape)
        self.input_shape = [None] + self.img_shape
        self.img_size = img_shape[:2]
        self.n_first_channel = n_first_channel
        self.n_layer = n_layer
        self.kullback_leibler_ratio = kullback_leibler_ratio
        self.reconstruction_weight_against_detail = reconstruction_weight_against_detail
        self.latent_dim = latent_dim
        self.vae_learning_rate = vae_learning_rate
        self.vae_beta1 = vae_beta1
        self.discriminator_learning_rate = discriminator_learning_rate
        self.discriminator_beta1 = discriminator_beta1

        assert self.n_layer > 1, 'n_layer must be more than 1'

        self.vae_pretrainer = None
        self.discriminator_pretrainer = None
        self.trainer = None
        self.decoder_graph = tf.Graph()
        self.trained_values = {}

    def _build_vae_pretrainer(self, encoder, decoder):
        inputs = input_data(shape=self.input_shape, name='input_x')
        # Build Network
        mean, log_var = encoder(inputs)
        encoded = self._encode(mean, log_var)
        decoded = decoder(encoded)
        # Loss
        element_wise_loss = self._get_mean_square(decoded, inputs)
        kullback_leibler_divergence = \
            self._get_kullback_leibler_divergence(mean, log_var)
        pretrain_vae_loss = self.reconstruction_weight_against_detail *\
            tf.reduce_mean(element_wise_loss + kullback_leibler_divergence)
        # Trainer
        pretrain_vae_op = TrainOp(loss=pretrain_vae_loss, 
                                  optimizer=self._get_optimizer('vae'), 
                                  batch_size=128, 
                                  name='VAE_pretrainer')

        return Trainer(pretrain_vae_op, tensorboard_dir=PRE_VAE_TENSORBOARD_DIR,
                       tensorboard_verbose=0,
                       checkpoint_path=PRE_VAE_CHECKPOINT_PATH,
                       max_checkpoints=1)

    def _build_discriminator_pretrainer(self, decoder, discriminator):
        inputs = input_data(shape=self.input_shape, name='input_x')
        is_true = input_data(shape=(None, 2), name='is_true')
        is_false = input_data(shape=(None, 2), name='is_false')
        # Build Network
        shape = tf.shape(fc(inputs, self.latent_dim))
        random_image = decoder(self._get_z(shape))
        prediction_origin, _ = discriminator(inputs)
        prediction_random, _ = discriminator(random_image, reuse=True)
        # Loss
        prediction_all = merge([prediction_origin, prediction_random], 'concat',
                               axis=0)
        y_all = merge([is_true, is_false], 'concat', axis=0)
        pretrain_discriminator_loss = crossentropy(prediction_all, y_all)
        # Trainer
        pretrain_discriminator_op = TrainOp(
            loss=pretrain_discriminator_loss, 
            optimizer=self._get_optimizer('discriminator'), batch_size=128,
            trainable_vars=self._get_trainable_variables(discriminator.scope),
            name='Discriminator_pretrainer')

        return Trainer(pretrain_discriminator_op,
                       tensorboard_dir=PRE_DIS_TENSORBOARD_DIR,
                       tensorboard_verbose=0,
                       checkpoint_path=PRE_DIS_CHECKPOINT_PATH,
                       max_checkpoints=1)

    def _build_trainer(self, encoder, decoder, discriminator):
        inputs = input_data(shape=self.input_shape, name='input_x')
        is_true = input_data(shape=(None, 2), name='is_true')
        is_false = input_data(shape=(None, 2), name='is_false')
        # Build Network
        mean, log_var = encoder(inputs)
        encoded = self._encode(mean, log_var)
        decoded = decoder(encoded)
        random_image = decoder(self._get_z(tf.shape(mean)), reuse=True)
        # Loss
        ## Encoder
        prediction_origin, feature_map_origin = discriminator(inputs)
        prediction_decoded, feature_map_decoded = discriminator(decoded, reuse=True)
        prediction_random, _ = discriminator(random_image, reuse=True)
        ## Decoder
        feature_wise_loss = \
            self._get_mean_square(feature_map_decoded, feature_map_origin)
        kullback_leibler_divergence = \
            self._get_kullback_leibler_divergence(mean, log_var)
        encoder_loss = self.reconstruction_weight_against_detail *\
            tf.reduce_mean(feature_wise_loss + kullback_leibler_divergence)

        prediction_gan = merge([prediction_decoded, prediction_random],
                               'concat', axis=0)
        y_gan = merge([is_true, is_true], 'concat', axis=0)
        gan_generator_loss = crossentropy(prediction_gan, y_gan)
        decoder_loss = (encoder_loss + gan_generator_loss) * 0.5
        ## Discriminator
        prediction_fake = merge([prediction_decoded, prediction_random],
                                'concat', axis=0)
        y_fake = merge([is_false, is_false], 'concat', axis=0)
        real_loss = crossentropy(prediction_origin, is_true)
        fake_loss = crossentropy(prediction_fake, y_fake)
        discriminator_loss = (real_loss + fake_loss) * 0.5
        # Trainer
        encoder_op = TrainOp(
            loss=encoder_loss,
            optimizer=self._get_optimizer('encoder'),
            batch_size=64,
            trainable_vars=self._get_trainable_variables(encoder.scope),
            name='Encoder')
        decoder_op = TrainOp(
            loss=decoder_loss,
            optimizer=self._get_optimizer('decoder'),
            batch_size=64,
            trainable_vars=self._get_trainable_variables(decoder.scope),
            name='Decoder')
        discriminator_op = TrainOp(
            loss=discriminator_loss,
            optimizer=self._get_optimizer('discriminator'),
            batch_size=64,
            trainable_vars=self._get_trainable_variables(discriminator.scope),
            name='Discriminator')
        return Trainer([encoder_op, decoder_op, discriminator_op],
                       checkpoint_path=CHECKPOINT_PATH, max_checkpoints=1)

    def _encode(self, mean, log_var):
        epsilon = tf.random_normal(tf.shape(mean), name='Epsilon')

        return mean + tf.exp(0.5 * log_var) * epsilon

    def _get_z(self, shape):
        z = tf.random_normal(shape, name='RandomZ')

        return reshape(z, (-1, self.latent_dim))

    def _get_kullback_leibler_divergence(self, mean, log_var):
        square_mean = tf.pow(mean, 2)
        variance = tf.exp(log_var)

        kullback_leibler_divergence = \
            tf.reduce_mean(1 + log_var - square_mean - variance,
                          reduction_indices=1)
        kullback_leibler_divergence = \
            - 0.5 * self.kullback_leibler_ratio * kullback_leibler_divergence

        return kullback_leibler_divergence

    def _get_mean_square(self, prediction, truth):
        return tf.reduce_mean(tf.squared_difference(prediction, truth),
                             reduction_indices=(1, 2, 3))

    def _get_optimizer(self, type_str):
        if type_str in ['vae', 'encoder', 'decoder']:
            learning_rate = self.vae_learning_rate
            beta1 = self.vae_beta1
        else: # 'discriminator'
            learning_rate = self.discriminator_learning_rate
            beta1 = self.discriminator_beta1
        opt = adam(learning_rate=learning_rate, beta1=beta1)

        return opt.get_tensor()

    def _get_trainable_variables(self, scope):
        return [v for v in tflearn.get_all_trainable_variable()
                if scope + '/' in v.name]

    def _get_input_tensor_by_name(self, name):
        return tf.get_collection(tf.GraphKeys.INPUTS, scope=name)[0]

    def train(self, x, n_sample=None, pretrain_vae_epoch=1, 
              pretrain_discriminator_epoch=1, train_epoch=10):
        if n_sample == None:
            n_sample = x.shape[0]
        is_true = np.tile([0., 1.], [n_sample, 1])
        is_false = np.tile([1., 0.], [n_sample, 1])

        encoder = Encoder(self.n_first_channel, self.n_layer, self.latent_dim)
        decoder = Decoder(self.img_shape, self.n_first_channel, self.n_layer)
        discriminator = Discriminator(self.n_first_channel, self.n_layer)

        with tf.Graph().as_default():
            self.vae_pretrainer = self._build_vae_pretrainer(encoder, decoder)
            trainer = self.vae_pretrainer
        
            input_tensor = self._get_input_tensor_by_name('input_x')
            feed_dict = {input_tensor:x}
            trainer.fit(feed_dict, n_epoch=pretrain_vae_epoch,
                        snapshot_epoch=True, shuffle_all=True,
                        run_id='VAE_pretrain')
            self.trained_values[encoder.scope] = \
                self._get_trained_values(trainer, encoder.scope)
            self.trained_values[decoder.scope] = \
                self._get_trained_values(trainer, decoder.scope)
        
        with tf.Graph().as_default():
            self.discriminator_pretrainer = \
                self._build_discriminator_pretrainer(decoder, discriminator)
            trainer = self.discriminator_pretrainer
            self._assign_values(trainer, decoder.scope)
        
            input_tensor = self._get_input_tensor_by_name('input_x')
            true_tensor = self._get_input_tensor_by_name('is_true')
            false_tensor = self._get_input_tensor_by_name('is_false')
            feed_dict = {input_tensor:x,
                         true_tensor:is_true,
                         false_tensor:is_false}
            trainer.fit(feed_dict, n_epoch=pretrain_discriminator_epoch,
                        snapshot_epoch=True, shuffle_all=True,
                        run_id='Discriminator_pretrain')
            self.trained_values[discriminator.scope] = \
                self._get_trained_values(trainer, discriminator.scope)

        with tf.Graph().as_default():
            self.trainer = self._build_trainer(encoder, decoder, discriminator)
            trainer = self.trainer
            self._assign_values(trainer, encoder.scope)
            self._assign_values(trainer, decoder.scope)
            self._assign_values(trainer, discriminator.scope)
            self._set_decoder(decoder)

            input_tensor = self._get_input_tensor_by_name('input_x')
            true_tensor = self._get_input_tensor_by_name('is_true')
            false_tensor = self._get_input_tensor_by_name('is_false')
            feed_dict = {input_tensor:x,
                         true_tensor:is_true,
                         false_tensor:is_false}
            self.trainer.fit([feed_dict] * 3, n_epoch=train_epoch,
                        snapshot_step=1000, snapshot_epoch=False,
                        shuffle_all=True, run_id='VAEGAN',
                        callbacks=[CustomCallback(self)])

    def _get_trained_values(self, trainer, scope):
        return {v.name:tflearn.variables.get_value(v, session=trainer.session)
                for v in self._get_trainable_variables(scope)}

    def _assign_values(self, trainer, scope):
        [trainer.session.run(v.assign(self.trained_values[scope][v.name]))
         for v in self._get_trainable_variables(scope)]

    def _set_decoder(self, decoder):
        with self.decoder_graph.as_default():
            inputs = input_data(shape=(None, self.latent_dim))
            net = decoder(inputs)
            self.decoder = DNN(net)

    def decode(self, z):
        with self.decoder_graph.as_default():
            return self.decoder.predict(z)

class Encoder(object):
    def __init__(self, n_first_channel, n_layer, latent_dim):
        self.n_first_channel = n_first_channel
        self.n_layer = n_layer
        self.latent_dim = latent_dim
        self.scope = 'Encoder'

    def __call__(self, x, reuse=False):
        net = x

        for i in range(self.n_layer):
            n_channel = self.n_first_channel * 2 ** i
            net = conv(net, n_channel, 4, strides=2, reuse=reuse,
                       scope='{s}/Conv_{n}'.format(s=self.scope, n=i))
            net = bn(net, reuse=reuse,
                     scope='{s}/BN_{n}'.format(s=self.scope, n=i))
            net = relu(net)
            # net = softplus(net)
        mean = fc(net, self.latent_dim, reuse=reuse,
                  scope='{s}/Mean'.format(s=self.scope))
        log_var = fc(net, self.latent_dim, reuse=reuse,
                     scope='{s}/LogVariance'.format(s=self.scope))

        return mean, log_var

class Decoder(object):
    def __init__(self, img_shape, n_first_channel, n_layer):
        self.img_size = img_shape[:2]
        self.color_channel = img_shape[2]
        self.n_first_channel = n_first_channel * 2 ** (n_layer - 1)
        self.n_layer = n_layer
        self.scope = 'Decoder'

    def __call__(self, z, reuse=False):
        net = z

        feature_height = self.img_size[0] // 2 ** self.n_layer
        feature_width = self.img_size[1] // 2 ** self.n_layer
        feature_channel = self.n_first_channel

        n_units = feature_height * feature_width * feature_channel
        net = fc(net, n_units, reuse=reuse, scope='{s}/FC'.format(s=self.scope))
        shape = [-1, feature_height, feature_width, feature_channel]
        net = reshape(net, shape)

        for i in range(self.n_layer):
            feature_height *= 2
            feature_width *= 2
            if i < self.n_layer - 1:
                feature_channel //= 2
            else:
                feature_channel = self.color_channel

            net = bn(net, reuse=reuse,
                     scope='{s}/BN_{n}'.format(s=self.scope, n=i))
            net = relu(net)
            # net = elu(net)
            net = conv_t(net, feature_channel, 4,
                         [feature_height, feature_width], strides=2,
                         reuse=reuse,
                         scope='{s}/ConvT_{n}'.format(s=self.scope, n=i))

        net = sigmoid(net)

        return net

class Discriminator(object):
    def __init__(self, n_first_channel, n_layer):
        self.n_first_channel = n_first_channel
        self.n_layer = n_layer
        self.scope = 'Discriminator'

    def __call__(self, x, reuse=False):
        net = x

        for i in range(self.n_layer):
            net = conv(net, self.n_first_channel * 2 ** i, 4, reuse=reuse,
                       scope='{s}/Conv_{n}'.format(s=self.scope, n=i))
            net = max_pool(net, 2)
            net = bn(net, reuse=reuse, 
                     scope='{s}/BN_{n}'.format(s=self.scope, n=i))
            # net = relu(net)
            net = elu(net)
            if i == self.n_layer - 1:
                feature_reconstruction = net

        net = fc(net, 2, reuse=reuse, scope='{s}/FC'.format(s=self.scope))
        net = softmax(net)

        return net, feature_reconstruction

class CustomCallback(tflearn.callbacks.Callback):
    def __init__(self, model, n_side=10):
        self.model = model
        self.n_side = n_side
        self.sample_z = np.random.normal(size=(n_side ** 2, model.latent_dim))

    def _save(self, name, z):
        model = self.model
        n_side = self.n_side
        img_height = model.img_shape[0]
        img_width = model.img_shape[1]
        img_channel = model.img_shape[2]
        image = np.ndarray(shape=(n_side * img_height,
                                  n_side * img_width,
                                  img_channel),
                           dtype=np.float32)

        model.trained_values = {
            scope:model._get_trained_values(model.trainer, scope)
            for scope in model.trained_values}
        with model.decoder_graph.as_default():
            [model._assign_values(model.decoder, scope)
             for scope in model.trained_values]
        decoded = model.decode(z)

        for y in range(n_side):
            for x in range(n_side):
                image[y * img_height : (y + 1) * img_height,
                      x * img_width : (x + 1) * img_width,
                      :] = decoded[x + y * n_side]
        image = np.clip(image, 0, 1)
        image *= 255
        io.imsave(name, image.astype(np.uint8))

    def on_batch_end(self, training_state, snapshot=False):
        if snapshot:
            step = training_state.step

            file_name = '{path}image-{step}.png'.format(path=CHECKPOINT_PATH,
                                                        step=step)
            self._save(file_name, self.sample_z)

    def on_train_end(self, training_state):
        latent_dim = self.model.latent_dim

        sample_z = np.ndarray(shape=(self.n_side ** 2, latent_dim),
                              dtype=np.float32)
        for row in range(self.n_side):
            start = np.random.normal(size=latent_dim)
            stop = np.random.normal(size=latent_dim)
            z_rows = np.array([np.linspace(start[i], stop[i], num=self.n_side)
                               for i in range(latent_dim)]).T
            sample_z[row * self.n_side : (row + 1) * self.n_side, :] = z_rows

        file_name = '{path}image-final.png'.format(path=CHECKPOINT_PATH)
        self._save(file_name, sample_z)

(X, Y), (testX, testY) = tflearn.datasets.cifar10.load_data()
X = np.concatenate((X, testX), axis=0)
Y = np.concatenate((Y, testY), axis=0)
X = X[Y == 1]

img_shape = X.shape[1:]

vaegan = VAEGAN(img_shape=img_shape, n_first_channel=64, n_layer=4,
                latent_dim=32, kullback_leibler_ratio=0.01,
                reconstruction_weight_against_detail=50.0)
vaegan.train(X, pretrain_vae_epoch=1, pretrain_discriminator_epoch=10, 
             train_epoch=100)

Reference site

VAEGAN fauxtograph

Recommended Posts

VAEGAN at TF Learn
DCGAN with TF Learn