I tried to implement adversarial validation

What is this article

After explaining what adversarial validation is, I will write the code that I tried to implement. I will write it here as a memorandum and organizing knowledge.

The code I referred to when posting this article is here

What is adversarial validation?

If the distribution of train data is different from that of test data, the distribution of validation data also depends on the distribution of train data, and test data may not be predicted well. One of the methods used at that time is adversarial validation.

Adversarial validation is to build a model that classifies train data and test data, and use it to create validation data with a distribution that is as close as possible to the test data.

Implementation

Creating the objective variable

Create a new column in train data and test data, and put 0 in train data and 1 in test data.


import pandas as pd

train['target'] = 0
test['target'] = 1

train_test = pd.concat([train, test], axis=0).reset_index(drop=True)
train_test.head()

Learning and classification

This time, I used lightgbm to build the model. Cross-validation is performed and the probability of test data is measured for all train data.

import numpy as np
import lightgbm as lgb
from sklearn.model_selection import StratifiedKFold

params = {'objective': 'binary',
          'max_depth': 5,
          'boosting': 'gbdt',
          'metric': 'auc'}

features = [col for col in train_test.columns if col not in ('target',)]
oof_pred = np.zeros((len(train_test), ))
cv = StratifiedKFold(n_splits=5, shuffle=True, random_state=42)

for fold, (train_idx, val_idx) in enumerate(cv.split(train_test, train_test['target'])):
    x_train, x_predict = train_test[features].iloc[train_idx], train_test[features].iloc[val_idx]
    y_train = train_test['target'][train_idx]

    train_set = lgb.Dataset(x_train, label=y_train)

    model = lgb.train(params, train_set)
    oof_pred[val_idx] = model.predict(x_predict).reshape(oof_pred[val_idx].shape)

Creating validation data

Sort the probability values in descending order, get an arbitrary number of data in descending order (probably test), and create validation data.

train_test['probability'] = oof_pred
train = train_test[train_test.target==0].drop('target', axis=1).sort_values('probability', ascending=False)

valid_idx = int(len(train)) / 5 #This time it is decided to be the top 20%

validation_data = train.iloc[:valid_idx]
train_data = train.iloc[valid_idx:]

I tried to put it together in a class

class Adversarial_validator:

    def __init__(self, train, test, features, categoricals):
        self.train = train
        self.test = test
        self.features = features
        self.categoricals = categoricals
        self.union_df = self.train_test_union(self.train, self.test)
        self.cv = self.get_cv()
        self.models = []
        self.oof_pred = self.fit()
        self.report_plot()

    def fit(self):
        oof_pred = np.zeros((len(self.union_df), ))

        for fold, (train_idx, val_idx) in enumerate(self.cv):
            x_train, x_predict = self.union_df[self.features].iloc[
                train_idx], self.union_df[self.features].iloc[val_idx]
            y_train = self.union_df['target'][train_idx]
            train_set = self.convert_dataset(x_train, y_train)
            model = self.train_model(train_set)
            self.models.append(model)

            oof_pred[val_idx] = model.predict(
                x_predict).reshape(oof_pred[val_idx].shape)
        self.union_df['prediction'] = oof_pred
        return oof_pred

    def train_test_union(self, train, test):
        train['target'] = 0
        test['target'] = 1
        return pd.concat([train, test], axis=0).reset_index(drop=True)

    def get_cv(self):
        cv = StratifiedKFold(n_splits=5,
                             shuffle=True, random_state=42)

        return cv.split(self.union_df, self.union_df['target'])

    def convert_dataset(self, X, y):
        return lgb.Dataset(X, label=y, categorical_feature=self.categoricals)

    def train_model(self, train_set):
        return lgb.train(self.get_params(), train_set)

    def get_params(self):
        param = {'num_leaves': 50,
                 'num_round': 100,
                 'min_data_in_leaf': 30,
                 'objective': 'binary',
                 'max_depth': 5,
                 'learning_rate': 0.2,
                 'min_child_samples': 20,
                 'boosting': 'gbdt',
                 'feature_fraction': 0.9,
                 'bagging_freq': 1,
                 'bagging_fraction': 0.9,
                 'bagging_seed': 44,
                 'verbose_eval': 50,
                 'metric': 'auc',
                 'verbosity': -1}
        return param

    def report_plot(self):
        fig, ax = plt.subplots(figsize=(16, 12))
        plt.subplot(2, 2, 1)
        self.plot_feature_importance()
        plt.subplot(2, 2, 2)
        self.plot_roc_curve()
        plt.subplot(2, 2, 3)
        plt.hist(self.union_df['target'] - self.oof_pred)
        plt.title('Distribution of errors')
        plt.subplot(2, 2, 4)
        plt.hist(np.random.choice(self.oof_pred, 1000, False))
        plt.title('Distribution of oof predictions')

    def get_feature_importance(self):
        n = len(self.models)
        feature_imp_df = pd.DataFrame()
        for i in range(n):
            tmp = pd.DataFrame(zip(self.models[i].feature_importance(
            ), self.features), columns=['Value', 'Feature'])
            tmp['n_models'] = i
            feature_imp_df = pd.concat([feature_imp_df, tmp])
            del tmp
        self.feature_importance = feature_imp_df
        return feature_imp_df

    def plot_feature_importance(self, n=20):
        imp_df = self.get_feature_importance().groupby(
            ['Feature'])[['Value']].mean().reset_index(False)
        imp_top_df = imp_df.sort_values('Value', ascending=False).head(n)
        sns.barplot(data=imp_top_df, x='Value', y='Feature', orient='h')
        plt.title('Feature importances')

    def plot_roc_curve(self):
        fpr, tpr, thresholds = metrics.roc_curve(
            self.union_df['target'], self.oof_pred)
        auc = metrics.auc(fpr, tpr)

        plt.plot(fpr, tpr, label='ROC curve (area = %.2f)' % auc)
        plt.legend()
        plt.title('ROC curve')
        plt.xlabel('False Positive Rate')
        plt.ylabel('True Positive Rate')

adv = Adversarial_validator(train, test, features, categoricals)

adv_output.png

The data used is from the 2019 Data Science Bowl of the kaggle competition.

Usage other than validation data creation

--Remove the features with high importance to bring the distribution of train data closer to the test data. --Reference for weighting data during training (weight_column)

Summary

I briefly introduced you to adversarial validation. I hope it helps those who read this article.

Recommended Posts

I tried to implement adversarial validation
I tried to implement PCANet
I tried to implement StarGAN (1)
I tried to implement Deep VQE
I tried to implement hierarchical clustering
I tried to implement Realness GAN
I tried to implement PLSA in Python
I tried to implement Autoencoder with TensorFlow
I tried to implement permutation in Python
I tried to implement PLSA in Python 2
I tried to implement ADALINE in Python
I tried to implement PPO in Python
I tried to implement CVAE with PyTorch
I tried to debug.
I tried to paste
I tried to implement reading Dataset with PyTorch
I tried to implement TOPIC MODEL in Python
I tried to implement selection sort in python
I tried to implement the traveling salesman problem
I tried to learn PredNet
I tried to organize SVM.
I tried to reintroduce Linux
I tried to introduce Pylint
I tried to summarize SparseMatrix
I tried to touch jupyter
I tried to implement multivariate statistical process management (MSPC)
I tried to implement and learn DCGAN with PyTorch
I tried to implement Minesweeper on terminal with python
I tried to implement a recommendation system (content-based filtering)
I tried to implement Dragon Quest poker in Python
I tried to implement an artificial perceptron with python
I tried to implement time series prediction with GBDT
I tried to implement GA (genetic algorithm) in Python
I tried to implement Grad-CAM with keras and tensorflow
I tried to implement SSD with PyTorch now (Dataset)
I tried to implement automatic proof of sequence calculation
I tried to implement a volume moving average with Quantx
I tried to implement a basic Recurrent Neural Network model
I tried to create Quip API
I tried to implement anomaly detection by sparse structure learning
I tried to touch Python (installation)
I tried to implement a one-dimensional cellular automaton in Python
I tried to implement breakout (deception avoidance type) with Quantx
[Django] I tried to implement access control by class inheritance.
I tried to explain Pytorch dataset
I tried Watson Speech to Text
I tried to touch Tesla's API
I tried to implement ListNet of rank learning with Chainer
I tried to implement the mail sending function in Python
I tried to implement Harry Potter sort hat with CNN
I tried to organize about MCMC.
I tried to implement Perceptron Part 1 [Deep Learning from scratch]
I tried to implement blackjack of card game in Python
I tried to move the ball
I tried to estimate the interval.
I tried to implement SSD with PyTorch now (model edition)
[Python] I tried to implement stable sorting, so make a note
I tried to implement anomaly detection using a hidden Markov model
I tried to implement a misunderstood prisoner's dilemma game in Python
I tried to implement sentence classification by Self Attention with PyTorch
I tried to create a linebot (implementation)