Project Euler 25

problem

The Fibonacci sequence is defined by the following recurrence formula:

Fn = Fn-1 + Fn-2, where F1 = 1, F2 = 1. The first 12 terms are:

F1 = 1 F2 = 1 F3 = 2 F4 = 3 F5 = 5 F6 = 8 F7 = 13 F8 = 21 F9 = 34 F10 = 55 F11 = 89 F12 = 144 The twelfth term, the first term in which F12 has three digits.

Answer the number of the first term that will be 1000 digits. http://odz.sakura.ne.jp/projecteuler/index.php?cmd=read&page=Problem%2025

Answer

I wrote it in the code as it is.

import math
def main():
  (n1, n2) = (1,1)
  N = 10
  MAX_N = 1000-1
  n = 2
  while math.log(n2, N)<MAX_N:
    (n1,n2) = (n2, n1+n2)
    n += 1
  print n
main()

Recommended Posts

Project Euler 37
Project Euler 47
Project Euler 31
Project Euler 4
Project Euler 38
Project Euler 26
Project Euler 8
Project Euler 22
Project Euler 19
Project Euler 50
Project Euler 33
Project Euler 32
Project Euler 43
Project Euler 35
Project Euler 36
Project Euler 24
Project Euler 48
Project Euler 45
Project Euler 6
Project Euler 44
Project Euler 39
Project Euler 40
Project Euler 49
Project Euler 29
Project Euler 27
Project Euler 41
Project Euler 18
Project Euler 13
Project Euler 30
Project Euler 16
Project Euler 14
Project Euler 25
Project Euler15 "Lattice Path"
Project Euler 2 Acceleration 2.21 Save microseconds.
Project Euler Original Method Group 1
Functional programming in Python Project Euler 1
Project Euler 10 "Sum of Prime Numbers"
[Note] Project Euler in Python (Problem 1-22)
Functional programming in Python Project Euler 3
Project Euler # 5 "Minimum Multiples" in Python
Project Euler 4 Attempt to speed up
Functional programming in Python Project Euler 2
Project Euler # 4 "Maximum Palindrome" in Python
Project Euler 9 Retention of calculation results
Project Euler # 3 "Maximum Prime Factors" in Python
Project Euler # 11 "Maximum Product in Grid" in Python
Project Euler # 16 "Sum of Powers" in Python
Project Euler # 9 "Special Pythagorean Triple" in Python
Project Euler # 14 "Longest Collatz Sequence" in Python
Project Euler # 17 "Number of Characters" in Python
Project Euler # 1 "Multiples of 3 and 5" in Python
Project Euler # 8 "Maximum Product in Number String" in Python
Project Euler # 10 "sum of prime numbers" in Python
Project Euler 28 Inefficient Answer Proposal Create "Spiral Numbers"
Project Euler 4 Coding with a new approach fails.
Project Euler # 12 "High Divisibility Triangular Number" in Python
[Day 2] Project generation