Project Euler 18

problem

When moving from the apex of the following triangle to the bottom, the maximum sum of the numbers is 23.

3 7 4 2 4 6 8 5 9 3 In this example 3 + 7 + 4 + 9 = 23.

When moving the following triangle from the apex to the bottom, find the maximum sum. (Omitted) Note: There are at most 16384 routes here, so you can try all the patterns. Problem 67 is the same problem, but with 100 lines, it can't be brute-forced. We need a smarter way. http://odz.sakura.ne.jp/projecteuler/index.php?cmd=read&page=Problem%2018

Answer

It's annoying, so I ended it with recursion.

def get_next_max(i,j,L1,L2):
  if L2[i][j] == 0:
    if i == len(L1)-1:
      L2[i][j] = L1[i][j]
    else:
      L2[i][j] = L1[i][j] + max(get_next_max(i+1,j,L1,L2),get_next_max(i+1,j+1,L1,L2))
  return L2[i][j]
    
def main():
  L1 = [
    [75],
    [95, 64],
    [17, 47, 82],
    [18, 35, 87, 10],
    [20, 04, 82, 47, 65],
    [19, 01, 23, 75, 03, 34],
    [88, 02, 77, 73, 07, 63, 67],
    [99, 65, 04, 28, 06, 16, 70, 92],
    [41, 41, 26, 56, 83, 40, 80, 70, 33],
    [41, 48, 72, 33, 47, 32, 37, 16, 94, 29],
    [53, 71, 44, 65, 25, 43, 91, 52, 97, 51, 14],
    [70, 11, 33, 28, 77, 73, 17, 78, 39, 68, 17, 57],
    [91, 71, 52, 38, 17, 14, 91, 43, 58, 50, 27, 29, 48],
    [63, 66, 04, 68, 89, 53, 67, 30, 73, 16, 69, 87, 40, 31],
    [04, 62, 98, 27, 23, 9, 70, 98, 73, 93, 38, 53, 60, 04, 23]
  ]
  L2 = [[0 for j in range(len(L1[i]))] for i in range(len(L1))]
  
  ans = get_next_max(0,0,L1,L2)
  #print ans 

Recommended Posts

Project Euler 37
Project Euler 7
Project Euler 47
Project Euler 31
Project Euler 4
Project Euler 38
Project Euler 17
Project Euler 26
Project Euler 23
Project Euler 22
Project Euler 19
Project Euler 50
Project Euler 42
Project Euler 33
Project Euler 32
Project Euler 43
Project Euler 36
Project Euler 24
Project Euler 46
Project Euler 48
Project Euler 45
Project Euler 6
Project Euler 39
Project Euler 49
Project Euler 29
Project Euler 27
Project Euler 41
Project Euler 18
Project Euler 13
Project Euler 30
Project Euler 16
Project Euler 14
Project Euler 34
Project Euler 25
[Project Euler] problem1
Project Euler15 "Lattice Path"
Project Euler 2 Acceleration 2.21 Save microseconds.
Project Euler Original Method Group 1
What is Project Euler 3 Acceleration?
Functional programming in Python Project Euler 1
Project Euler 10 "Sum of Prime Numbers"
[Note] Project Euler in Python (Problem 1-22)
Functional programming in Python Project Euler 3
Project Euler # 5 "Minimum Multiples" in Python
Project Euler 4 Attempt to speed up
Functional programming in Python Project Euler 2
Project Euler 11 "Maximum product in grid"
Project Euler # 15 "Lattice Path" in Python
Project Euler # 4 "Maximum Palindrome" in Python
Project Euler 9 Retention of calculation results
Project Euler # 3 "Maximum Prime Factors" in Python
Project Euler # 7 "1000 1st prime number" in Python
Project Euler # 16 "Sum of Powers" in Python
Project Euler # 9 "Special Pythagorean Triple" in Python
Project Euler # 14 "Longest Collatz Sequence" in Python
I wrote Project Euler 1 in one liner.
Project Euler # 2 "Even Fibonacci Numbers" in Python
Project Euler # 17 "Number of Characters" in Python
Project Euler # 1 "Multiples of 3 and 5" in Python
Project Euler # 8 "Maximum Product in Number String" in Python
Project Euler # 10 "sum of prime numbers" in Python