Essayez le livre "Introduction au développement d'applications de traitement du langage naturel en 15 étapes" --Chapitre 4 Etape 14 Mémo "Recherche Hyper Paramètre"

Contenu

Ceci est un mémo pour moi pendant que je lis Introduction aux applications de traitement du langage naturel en 15 étapes. Cette fois, au chapitre 4, étape 14, notez vos propres points.

Préparation

Aperçu des chapitres

Dans ce chapitre, nous cherchons à trouver les valeurs des paramètres appropriés (et non les paramètres à apprendre) qui devraient être données en externe au système d'apprentissage automatique.

14.1 Hyper paramètres

Méta-paramètres en une étape définis par les concepteurs et les programmeurs avant l'apprentissage, et non les paramètres ajustés et acquis par l'apprentissage.

14.2 Recherche de grille

C'est une méthode pour énumérer les paramètres à rechercher et les candidats pour chaque valeur, et essayer toutes les combinaisons pour trouver la meilleure. Scikit-learn fournit sklearn.model_selection.GridSearchCV.

--Utilisez la classe classifier avec l'API Scikit-learn

#N'utilisez pas de pipeline

## train
vectorizer = TfidfVectorizer(tokenizer=tokenize, ngram_range=(1, 2))
train_vectors = vectorizer.fit_transform(train_texts)
parameters = {  # <1>
    'n_estimators': [10, 20, 30, 40, 50, 100, 200, 300, 400, 500],
    'max_features': ('sqrt', 'log2', None),
}
classifier = RandomForestClassifier()
gridsearch = GridSearchCV(classifier, parameters)
gridsearch.fit(train_vectors, train_labels)

## predict
test_vectors = vectorizer.transform(test_texts)
predictions = gridsearch.predict(test_vectors)


#Utiliser le pipeline

## train 
pipeline = Pipeline([
    ('vectorizer', TfidfVectorizer(tokenizer=tokenize, ngram_range=(1, 2))),
    ('classifier', RandomForestClassifier()),
])
parameters = {
    'vectorizer__ngram_range':[(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)],
    'classifier__n_estimators':[10, 20, 30, 40, 50, 100, 200, 300, 400, 500],
    'classifier__max_features':('sqrt', 'log2', None),
}
gridsearch = GridSearchCV(pipeline, parameters)
gridsearch.fit(texts, labels)

## predict
gridsearch.predict(texts)

GridSearchCV


#verbeux: affiché car je ne connaissais pas l'état d'exécution de la recherche de grille(1)
# n_emplois: autant que possible(-1)Exécuter en parallèle
clf = GridSearchCV(pipeline, parameters, verbose=1, n_jobs=-1)

Résultat d'exécution


from dialogue_agent import DialogueAgent  # <1>
↓
from dialogue_agent_pipeline_gridsearch import DialogueAgent  # <1>

$ docker run -it -v $(pwd):/usr/src/app/ 15step:latest python evaluate_dialogue_agent.py
#Il a fallu environ 20 minutes pour terminer l'exécution
Fitting 3 folds for each of 180 candidates, totalling 540 fits

[Parallel(n_jobs=-1)]: Done  46 tasks      | elapsed:    5.4s
[Parallel(n_jobs=-1)]: Done 196 tasks      | elapsed:  2.2min
[Parallel(n_jobs=-1)]: Done 446 tasks      | elapsed:  5.5min
[Parallel(n_jobs=-1)]: Done 540 out of 540 | elapsed: 19.9min finished

0.7021276595744681
{'classifier__max_features': 'log2', 'classifier__n_estimators': 300, 'vectorizer__ngram_range': (1, 1)}

―― Au fur et à mesure que le nombre de paramètres à rechercher augmente, le temps nécessaire pour rechercher la recherche de grille devient exponentiellement long.

14.3 Utilisation d'Hyperopt 14.4 Distribution de probabilité

Un outil pour rechercher des hyper paramètres plus efficacement que la recherche de grille. Donne l'espace des paramètres et la fonction objectif et renvoie les hyperparamètres optimaux.

--Parameter space: Paramètres à rechercher et candidats pour chaque valeur

#Recherche de paramètres
vectorizer = TfidfVectorizer(tokenizer=tokenize, ngram_range=(1, 2))
train_vectors = vectorizer.fit_transform(train_texts)

##Fonction objective
def objective(args):
    classifier = RandomForestClassifier(n_estimators=int(args['n_estimators']),
                                        max_features=args['max_features'])
    classifier.fit(tr_vectors, tr_labels)
    val_predictions = classifier.predict(val_vectors)
    accuracy = accuracy_score(val_predictions, val_labels)
    return -accuracy

##Espace des paramètres
max_features_choices = ('sqrt', 'log2', None)
space = {
    'n_estimators': hp.quniform('n_estimators', 10, 500, 10),
    'max_features': hp.choice('max_features', max_features_choices),
}
best = fmin(objective, space, algo=tpe.suggest, max_evals=30)

# train
best_classifier = RandomForestClassifier(
    n_estimators=int(best['n_estimators']),
    max_features=max_features_choices[best['max_features']])
best_classifier.fit(train_vectors, train_labels)

# predict
test_vectors = vectorizer.transform(test_texts)
predictions = best_classifier.predict(test_vectors)

14.5 Application à Keras

Les détails sont omis car l'exécution ne se termine pas facilement.

--Session claire

Évaluation

L'exécution ne progresse pas bien (car c'est un CPU, cela prend du temps, ne peut-il pas être exécuté avec un CPU?), Donc je le mettrai à jour plus tard si je peux me le permettre.

Recommended Posts

Essayez le livre "Introduction au développement d'applications de traitement du langage naturel en 15 étapes" --Chapitre 4 Etape 14 Mémo "Recherche Hyper Paramètre"
Essayez le livre «Introduction au développement d'applications de traitement du langage naturel en 15 étapes» - Chapitre 2 Étape 06 Mémo «Identifiant»
Essayez le livre "Introduction au développement d'applications de traitement du langage naturel en 15 étapes" - Chapitre 2 Étape 02 Mémo "Prétraitement"
Essayez le livre «Introduction au développement d'applications de traitement du langage naturel en 15 étapes» - Chapitre 2 Étape 07 Mémo «Évaluation»
Essayez le livre «Introduction au développement d'applications de traitement du langage naturel en 15 étapes» --Chapitre 2 Étape 04 Mémo «Extraction de fonctionnalités»
Essayez le livre "Introduction au développement d'applications de traitement du langage naturel en 15 étapes" - Chapitre 4 Étape 15 Mémo "Collecte de données"
Essayez le livre «Introduction au développement d'applications de traitement du langage naturel en 15 étapes» - Chapitre 3 Étape 08 Mémo «Introduction aux réseaux de neurones»
Essayez le livre "Introduction au développement d'applications de traitement du langage naturel en 15 étapes" --Chapitre 2 Étape 05 Mémo "Conversion de quantité de fonctionnalités"
Essayez le livre "Introduction au développement d'applications de traitement du langage naturel en 15 étapes" - Chapitre 3 Étape 11 Mémo "Embeddings de mots"
Essayez le livre "Introduction au développement d'applications de traitement du langage naturel en 15 étapes" --Chapitre 3 Étape 12 Mémo "Réseaux de neurones convolutifs"
Essayez le livre «Introduction au développement d'applications de traitement du langage naturel en 15 étapes» --Chapitre 3 Étape 13 Mémo «Réseaux de neurones récurrents»
Essayez le livre «Introduction au développement d'applications de traitement du langage naturel en 15 étapes» --Chapitre 2 Étape 01 Mémo «Créer un agent de dialogue»
Essayez le livre "Introduction au développement d'applications de traitement du langage naturel en 15 étapes" --Chapitre 2 Étape 03 Mémo "Analyse morphologique et écriture écrite"
Essayons le livre "Introduction au développement d'applications de traitement du langage naturel en 15 étapes" --Chapitre 3 Étape 10 Mémo "Détails et amélioration du réseau neuronal"
Essayez le livre "Introduction au développement d'applications de traitement du langage naturel en 15 étapes" -Chapitre 1 Mémo "Connaissances préliminaires avant de commencer les exercices"
[WIP] Pré-traitement des notes dans le traitement du langage naturel
Résumé du début au chapitre 1 de l'introduction aux modèles de conception appris en langage Java
[Chapitre 5] Introduction à Python avec 100 coups de traitement du langage
[Chapitre 6] Introduction à scicit-learn avec 100 coups de traitement du langage
[Chapitre 3] Introduction à Python avec 100 coups de traitement du langage
[Chapitre 2] Introduction à Python avec 100 coups de traitement du langage
[Chapitre 4] Introduction à Python avec 100 coups de traitement du langage
[Réunion de changement d'emploi] Essayez de classer les entreprises en traitant le bouche-à-oreille en langage naturel avec word2vec
[Traitement du langage naturel] J'ai essayé de visualiser les sujets d'actualité cette semaine dans la communauté Slack
[Traitement du langage naturel] J'ai essayé de visualiser les remarques de chaque membre de la communauté Slack
[Python] Essayez de classer les boutiques de ramen par traitement du langage naturel
Résumé du chapitre 2 de l'introduction aux modèles de conception appris en langage Java
Chapitre 4 Résumé de l'introduction aux modèles de conception appris en langage Java
Résumé du chapitre 3 de l'introduction aux modèles de conception appris en langage Java
[Introduction à RasPi4] Construction de l'environnement, système de traitement du langage naturel mecab, etc. .. .. ♪
Dockerfile avec les bibliothèques nécessaires pour le traitement du langage naturel avec python
100 traitements du langage naturel frappent le chapitre 4 Commentaire
100 Language Processing Knock Chapitre 1 en Python
Essayez Cython dans les plus brefs délais
Se préparer à démarrer le traitement du langage naturel
De l'introduction de l'API GoogleCloudPlatform Natural Language à son utilisation
J'ai essayé de résoudre 100 traitements linguistiques Knock version 2020 [Chapitre 3: Expressions régulières 25-29]