Le suivi des objets d'OpneCV a déplacé l'échantillon de temps en temps, Je n'ai jamais lancé dlib, alors essayez-le.
Il semble que les performances soient plutôt bonnes car je suis le flou de mouvement.
La vidéo est ci-dessous. https://www.youtube.com/watch?v=ORgMddcNHvU [](https://www.youtube.com/watch?v = ORgMddcNHvU)
Le code source est ci-dessous.
#!/usr/bin/env python
# -*- coding: utf-8 -*-
'''
correlation_tracker.py.
Usage:
correlation_tracker.py [<video source>] [<resize rate>]
'''
import sys
import dlib
import cv2
import time
import copy
#Gestionnaire d'événements de souris
mouse_start_x, mouse_start_y = 0, 0
mouse_end_x, mouse_end_y = 0, 0
selecting = False
tracker_start_flag = False
tracking_flag = False
def select_roi(event,x,y,flags,param):
global selecting, tracker_start_flag
global mouse_start_x, mouse_start_y
global mouse_end_x, mouse_end_y
if event == cv2.EVENT_LBUTTONDOWN:
selecting = True
mouse_start_x, mouse_start_y = x,y
elif event == cv2.EVENT_MOUSEMOVE:
if selecting == True:
mouse_end_x, mouse_end_y = x, y
else:
pass
elif event == cv2.EVENT_LBUTTONUP:
mouse_end_x, mouse_end_y = x, y
selecting = False
tracker_start_flag = True
#Interprétation des arguments
try:
fn = sys.argv[1]
if fn.isdigit() == True:
fn = int(fn)
except:
fn = 0
try:
resize_rate = sys.argv[2]
resize_rate = int(resize_rate)
except:
resize_rate = 1
#Génération de tracker
tracker = dlib.correlation_tracker()
video_input = cv2.VideoCapture(fn)
if (video_input.isOpened() == True):
ret, frame = video_input.read()
cv2.imshow('correlation tracker', frame)
cv2.setMouseCallback('correlation tracker', select_roi)
while(video_input.isOpened() == True):
ret, frame = video_input.read()
temp_frame = copy.deepcopy(frame)
#Réduction de la trame cible pour réduire la charge de traitement (lorsque l'argument est spécifié)
height, width = frame.shape[:2]
temp_frame = cv2.resize(frame, (int(width/resize_rate), int(height/resize_rate)))
if tracker_start_flag == True:
#Commencer le suivi
tracker.start_track(temp_frame, dlib.rectangle(mouse_start_x, mouse_start_y, mouse_end_x, mouse_end_y))
tracking_flag = True
tracker_start_flag = False
elif tracking_flag == True:
#Suivi des mises à jour
tracker.update(temp_frame)
#dessin
if selecting == True:
cv2.rectangle(frame, (mouse_start_x, mouse_start_y), (mouse_end_x, mouse_end_y), (0, 0, 255), 2)
if tracking_flag == True:
tracking_point = tracker.get_position()
tracking_point_x1 = int(tracking_point.left())
tracking_point_y1 = int(tracking_point.top())
tracking_point_x2 = int(tracking_point.right())
tracking_point_y2 = int(tracking_point.bottom())
cv2.rectangle(frame, (tracking_point_x1, tracking_point_y1), (tracking_point_x2, tracking_point_y2), (0, 0, 255), 2)
cv2.imshow('correlation tracker', frame)
c = cv2.waitKey(50) & 0xFF
if c==27: # ESC
break
c'est tout.
Recommended Posts