Comment utiliser la correspondance d'image

introduction

image-match est, en un mot, un moteur de recherche d'images. Vous pouvez enregistrer n'importe quelle image et trouver l'image en utilisant l'image comme clé. Il est également possible d'effectuer une recherche d'images à une vitesse extrêmement élevée en combinant avec Elasticsearch.

Conditions préalables

article La description
Date de vérification 2016.04.08
OS Mac OS X 10.10.5
Python 2.7.11
Elasticsearch 2.2.1

Préparation préalable

$ brew install py2cairo cairo elasticsearch
$ pip install numpy scipy image_match

Comment utiliser

Essayez de comparer des images

Essayons un exemple de README de correspondance d'image.

first.py


from image_match.goldberg import ImageSignature

gis = ImageSignature()
# a = gis.generate_signature('https://upload.wikimedia.org/wikipedia/commons/thumb/e/ec/Mona_Lisa,_by_Leonardo_da_Vinci,_from_C2RMF_retouched.jpg/687px-Mona_Lisa,_by_Leonardo_da_Vinci,_from_C2RMF_retouched.jpg')
a = gis.generate_signature('687px-Mona_Lisa,_by_Leonardo_da_Vinci,_from_C2RMF_retouched.jpg')
#b = gis.generate_signature('https://pixabay.com/static/uploads/photo/2012/11/28/08/56/mona-lisa-67506_960_720.jpg')
b = gis.generate_signature('mona-lisa-67506_960_720.jpg')

print(gis.normalized_distance(a, b))

c = gis.generate_signature('https://upload.wikimedia.org/wikipedia/commons/e/e0/Caravaggio_-_Cena_in_Emmaus.jpg')
print(gis.normalized_distance(a, c))

d = gis.generate_signature('https://c2.staticflickr.com/8/7158/6814444991_08d82de57e_z.jpg')
print(gis.normalized_distance(a, d))

Je vais essayer.

$ python first.py
0.220951701409
0.684462753815
0.422527138625

Si vous spécifiez l'URL de l'image cible, vous pouvez obtenir l'image et effectuer une recherche. Cela prendra un certain temps, c'est donc une bonne idée de le supprimer à l'avance avec curl etc. et de spécifier directement le chemin du fichier.

with Elasticsearch Utilisons-le avec Elasticsearch.

$ elasticsearch
[2016-04-08 15:18:47,952][INFO ][node                     ] [Alexander Lexington] version[2.2.1], pid[59417], build[d045fc2/2016-03-09T09:38:54Z]
[2016-04-08 15:18:47,952][INFO ][node                     ] [Alexander Lexington] initializing ...
[2016-04-08 15:18:48,945][INFO ][plugins                  ] [Alexander Lexington] modules [lang-expression, lang-groovy], plugins [], sites []
[2016-04-08 15:18:48,998][INFO ][env                      ] [Alexander Lexington] using [1] data paths, mounts [[/ (/dev/disk1)]], net usable_space [69.9gb], net total_space [232.6gb], spins? [unknown], types [hfs]
[2016-04-08 15:18:48,998][INFO ][env                      ] [Alexander Lexington] heap size [990.7mb], compressed ordinary object pointers [true]
[2016-04-08 15:18:48,999][WARN ][env                      ] [Alexander Lexington] max file descriptors [10240] for elasticsearch process likely too low, consider increasing to at least [65536]
[2016-04-08 15:18:52,884][INFO ][node                     ] [Alexander Lexington] initialized
[2016-04-08 15:18:52,884][INFO ][node                     ] [Alexander Lexington] starting ...
[2016-04-08 15:18:53,095][INFO ][transport                ] [Alexander Lexington] publish_address {127.0.0.1:9300}, bound_addresses {[fe80::1]:9300}, {[::1]:9300}, {127.0.0.1:9300}
[2016-04-08 15:18:53,109][INFO ][discovery                ] [Alexander Lexington] elasticsearch_hattori-h/FnX_ySN8RP2my8GcBTZsvw
[2016-04-08 15:18:56,148][INFO ][cluster.service          ] [Alexander Lexington] new_master {Alexander Lexington}{FnX_ySN8RP2my8GcBTZsvw}{127.0.0.1}{127.0.0.1:9300}, reason: zen-disco-join(elected_as_master, [0] joins received)
[2016-04-08 15:18:56,182][INFO ][http                     ] [Alexander Lexington] publish_address {127.0.0.1:9200}, bound_addresses {[fe80::1]:9200}, {[::1]:9200}, {127.0.0.1:9200}
[2016-04-08 15:18:56,182][INFO ][node                     ] [Alexander Lexington] started
[2016-04-08 15:18:56,230][INFO ][gateway                  ] [Alexander Lexington] recovered [0] indices into cluster_state
[2016-04-08 15:34:22,441][INFO ][cluster.metadata         ] [Alexander Lexington] [images] creating index, cause [auto(index api)], templates [], shards [5]/[1], mappings [image]
[2016-04-08 15:34:22,889][INFO ][cluster.routing.allocation] [Alexander Lexington] Cluster health status changed from [RED] to [YELLOW](reason: [shards started [[images][4]] ...]).
[2016-04-08 15:34:22,998][INFO ][cluster.metadata         ] [Alexander Lexington] [images] update_mapping [image]

Après avoir démarré Elasticsearch, exécutez le script suivant.

first_with_es.py


import json
from elasticsearch import Elasticsearch
from image_match.elasticsearch_driver import SignatureES

es = Elasticsearch()
ses = SignatureES(es)

image_set = (
    'https://upload.wikimedia.org/wikipedia/commons/thumb/e/ec/Mona_Lisa,_by_Leonardo_da_Vinci,_from_C2RMF_retouched.jpg/687px-Mona_Lisa,_by_Leonardo_da_Vinci,_from_C2RMF_retouched.jpg',
    'https://pixabay.com/static/uploads/photo/2012/11/28/08/56/mona-lisa-67506_960_720.jpg',
    'https://upload.wikimedia.org/wikipedia/commons/e/e0/Caravaggio_-_Cena_in_Emmaus.jpg',
    'https://c2.staticflickr.com/8/7158/6814444991_08d82de57e_z.jpg',
)
for img in image_set:
    print("add image to Elasticsearch. img=%s" % img)
    ses.add_image(img)


search_image_set = (
    'https://pixabay.com/static/uploads/photo/2012/11/28/08/56/mona-lisa-67506_960_720.jpg',
    'http://i.imgur.com/CVYBCCy.jpg',
    'http://i.imgur.com/T5AusYd.jpg',
)
for img in search_image_set:
    print("=== search %s ===" % img)
    print(json.dumps(ses.search_image(img, all_orientations=True), indent=2))
$ first_with_es.py
add image to Elasticsearch. img=https://upload.wikimedia.org/wikipedia/commons/thumb/e/ec/Mona_Lisa,_by_Leonardo_da_Vinci,_from_C2RMF_retouched.jpg/687px-Mona_Lisa,_by_Leonardo_da_Vinci,_from_C2RMF_retouched.jpg
add image to Elasticsearch. img=https://pixabay.com/static/uploads/photo/2012/11/28/08/56/mona-lisa-67506_960_720.jpg
add image to Elasticsearch. img=https://upload.wikimedia.org/wikipedia/commons/e/e0/Caravaggio_-_Cena_in_Emmaus.jpg
add image to Elasticsearch. img=https://c2.staticflickr.com/8/7158/6814444991_08d82de57e_z.jpg
=== search https://pixabay.com/static/uploads/photo/2012/11/28/08/56/mona-lisa-67506_960_720.jpg ===
[
  {
    "path": "https://pixabay.com/static/uploads/photo/2012/11/28/08/56/mona-lisa-67506_960_720.jpg ",
    "score": 2.435569,
    "dist": 0.0,
    "id": "AVP0lC4XSbcGjA3_XZUG"
  },
  {
    "path": "https://upload.wikimedia.org/wikipedia/commons/thumb/e/ec/Mona_Lisa,_by_Leonardo_da_Vinci,_from_C2RMF_retouched.jpg/687px-Mona_Lisa,_by_Leonardo_da_Vinci,_from_C2RMF_retouched.jpg ",
    "score": 0.029808408,
    "dist": 0.22095170140933634,
    "id": "AVP0lCRBSbcGjA3_XZUF"
  },
  {
    "path": "https://c2.staticflickr.com/8/7158/6814444991_08d82de57e_z.jpg ",
    "score": 0.004886414,
    "dist": 0.42325822368808808,
    "id": "AVP0lDflSbcGjA3_XZUI"
  }
]
=== search http://i.imgur.com/CVYBCCy.jpg ===
[
  {
    "path": "https://pixabay.com/static/uploads/photo/2012/11/28/08/56/mona-lisa-67506_960_720.jpg ",
    "score": 0.20739666,
    "dist": 0.15454905655638429,
    "id": "AVP0lC4XSbcGjA3_XZUG"
  },
  {
    "path": "https://upload.wikimedia.org/wikipedia/commons/thumb/e/ec/Mona_Lisa,_by_Leonardo_da_Vinci,_from_C2RMF_retouched.jpg/687px-Mona_Lisa,_by_Leonardo_da_Vinci,_from_C2RMF_retouched.jpg ",
    "score": 0.016346568,
    "dist": 0.24980626832071956,
    "id": "AVP0lCRBSbcGjA3_XZUF"
  },
  {
    "path": "https://c2.staticflickr.com/8/7158/6814444991_08d82de57e_z.jpg ",
    "score": 0.0031033582,
    "dist": 0.43156216266051023,
    "id": "AVP0lDflSbcGjA3_XZUI"
  }
]
=== search http://i.imgur.com/T5AusYd.jpg ===
[
  {
    "path": "https://pixabay.com/static/uploads/photo/2012/11/28/08/56/mona-lisa-67506_960_720.jpg ",
    "score": 1.5544797,
    "dist": 0.069116439263706961,
    "id": "AVP0lC4XSbcGjA3_XZUG"
  },
  {
    "path": "https://upload.wikimedia.org/wikipedia/commons/thumb/e/ec/Mona_Lisa,_by_Leonardo_da_Vinci,_from_C2RMF_retouched.jpg/687px-Mona_Lisa,_by_Leonardo_da_Vinci,_from_C2RMF_retouched.jpg ",
    "score": 0.029808408,
    "dist": 0.22484320805049718,
    "id": "AVP0lCRBSbcGjA3_XZUF"
  },
  {
    "path": "https://c2.staticflickr.com/8/7158/6814444991_08d82de57e_z.jpg ",
    "score": 0.004886414,
    "dist": 0.42394015619010844,
    "id": "AVP0lDflSbcGjA3_XZUI"
  }
]

Plus le nombre de «score» est grand (plus petit, plus proche de «dist»), plus les images sont similaires.

Recommended Posts

Comment utiliser la correspondance d'image
Comment utiliser Python-shell
Remarques sur l'utilisation de tf.data
Comment utiliser virtualenv
Comment utiliser Seaboan
Comment utiliser le shogun
Comment utiliser Pandas 2
Comment utiliser Virtualenv
Comment utiliser numpy.vectorize
Comment utiliser pytest_report_header
Comment utiliser partiel
Comment utiliser Bio.Phylo
Comment utiliser SymPy
Comment utiliser x-means
Comment utiliser WikiExtractor.py
Comment utiliser IPython
Comment utiliser virtualenv
Comment utiliser Matplotlib
Comment utiliser iptables
Comment utiliser numpy
Comment utiliser TokyoTechFes2015
Comment utiliser venv
Comment utiliser le dictionnaire {}
Comment utiliser Pyenv
Comment utiliser la liste []
Comment utiliser python-kabusapi
Comment utiliser OptParse
Comment utiliser le retour
Comment utiliser pyenv-virtualenv
Comment utiliser imutils
Comment utiliser Qt Designer
Comment utiliser la recherche triée
[gensim] Comment utiliser Doc2Vec
python3: Comment utiliser la bouteille (2)
Comprendre comment utiliser django-filter
Comment utiliser le générateur
[Python] Comment utiliser la liste 1
Comment utiliser FastAPI ③ OpenAPI
Comment utiliser Python Argparse
Comment utiliser IPython Notebook
Comment utiliser Pandas Rolling
[Note] Comment utiliser virtualenv
Comment utiliser les dictionnaires redis-py
Python: comment utiliser pydub
[Python] Comment utiliser checkio
[Aller] Comment utiliser "... (3 périodes)"
Comment faire fonctionner GeoIp2 de Django
[Python] Comment utiliser input ()
Comment utiliser le décorateur
[Introduction] Comment utiliser open3d
Comment utiliser Python lambda
Comment utiliser Jupyter Notebook
[Python] Comment utiliser virtualenv
python3: Comment utiliser la bouteille (3)
python3: Comment utiliser la bouteille
Comment utiliser Google Colaboratory
Comment utiliser les octets Python
Comment utiliser cron (mémo personnel)