OS:Ubuntu 18.04LTS
bash
$ conda create -n pycaret python=3.6.10
bash
$ conda activate pycaret
(pycaret)$ pip install pycaret
(pycaret)$ python -m ipykernel install --user --name pycaret --display-name "display-name-here"
Cependant, lorsque je l'ai récemment installé, j'ai commencé à recevoir une erreur lorsque j'ai exécuté la commande suivante sur le notebook jupyter.
python
from pycaret.datasets import get_data
dataset = get_data('credit', profile=True)
Il s'agit d'une commande à télécharger depuis le référentiel de données de PyCaret avec get_data
, et le didacticiel d'origine n'a pas donné l'argument profile = True
. En d'autres termes, il est exécuté avec l'argument par défaut profile = False
. * Dans ce cas, seules les 5 premières lignes de données sont affichées *.
Par contre, si l'argument profile = True
est donné, il sera affiché au format rapport de profilage pandas. Vous pouvez vérifier les statistiques de base et le coefficient de corrélation de DataFrame en même temps, mais vous n'avez pas à vous soucier de ʻimport pandas_profiling`.
Cependant, lorsque j'ai installé en utilisant pip install pycaret
à des moments différents, j'ai eu une erreur avec profile = True
, probablement parce que les subversions de certains paquets étaient différentes, donc requirements.txt Est installé en utilisant.
bash
$ conda activate pycaret
(pycaret)$ pip install -r requirements.txt
(pycaret)$ python -m ipykernel install --user --name pycaret --display-name "display-name-here"
Décrivez ce qui suit dans requirements.txt.
astropy==4.0.1.post1
attrs==19.3.0
awscli==1.18.64
backcall==0.1.0
bleach==3.1.5
blis==0.4.1
boto==2.49.0
boto3==1.13.14
botocore==1.16.14
catalogue==1.0.0
catboost==0.20.2
certifi==2020.4.5.1
chardet==3.0.4
chart-studio==1.1.0
click==7.1.2
colorama==0.4.3
colorlover==0.3.0
combo==0.1.0
confuse==1.1.0
cufflinks==0.17.0
cycler==0.10.0
cymem==2.0.3
datefinder==0.7.0
DateTime==4.3
decorator==4.4.2
defusedxml==0.6.0
docutils==0.15.2
entrypoints==0.3
funcy==1.14
future==0.18.2
gensim==3.8.3
graphviz==0.14
htmlmin==0.1.12
idna==2.9
importlib-metadata==1.6.0
ipykernel==5.3.0
ipython==7.14.0
ipython-genutils==0.2.0
ipywidgets==7.5.1
jedi==0.17.0
Jinja2==2.11.2
jmespath==0.10.0
joblib==0.15.1
jsonschema==3.2.0
jupyter-client==6.1.3
jupyter-core==4.6.3
kiwisolver==1.2.0
kmodes==0.10.1
lightgbm==2.3.1
llvmlite==0.32.1
MarkupSafe==1.1.1
matplotlib==3.2.1
missingno==0.4.2
mistune==0.8.4
mlxtend==0.17.2
more-itertools==8.3.0
murmurhash==1.0.2
nbconvert==5.6.1
nbformat==5.0.6
nltk==3.5
notebook==6.0.3
numba==0.49.1
numexpr==2.7.1
numpy==1.18.4
packaging==20.4
pandas==1.0.3
pandas-profiling==2.3.0
pandocfilters==1.4.2
parso==0.7.0
pexpect==4.8.0
phik==0.9.12
pickleshare==0.7.5
Pillow==7.1.2
plac==1.1.3
plotly==4.4.1
pluggy==0.13.1
preshed==3.0.2
prometheus-client==0.7.1
prompt-toolkit==3.0.5
ptyprocess==0.6.0
py==1.8.1
pyasn1==0.4.8
pycaret==1.0.0
Pygments==2.6.1
pyLDAvis==2.1.2
pyod==0.7.9
pyparsing==2.4.7
pyrsistent==0.16.0
pytest==5.4.2
python-dateutil==2.8.1
pytz==2020.1
PyYAML==5.3.1
pyzmq==19.0.1
regex==2020.5.14
requests==2.23.0
retrying==1.3.3
rsa==3.4.2
s3transfer==0.3.3
scikit-learn==0.22
scipy==1.4.1
seaborn==0.10.1
Send2Trash==1.5.0
shap==0.32.1
six==1.14.0
smart-open==2.0.0
spacy==2.2.4
srsly==1.0.2
suod==0.0.4
tbb==2020.0.133
terminado==0.8.3
testpath==0.4.4
textblob==0.15.3
thinc==7.4.0
tornado==6.0.4
tqdm==4.46.0
traitlets==4.3.3
umap-learn==0.4.3
urllib3==1.25.9
wasabi==0.6.0
wcwidth==0.1.9
webencodings==0.5.1
widgetsnbextension==3.5.1
wordcloud==1.7.0
xgboost==0.90
yellowbrick==1.0.1
zipp==3.1.0
zope.interface==5.1.0
python
import pandas as pd
import numpy as np
df = pd.read_csv('/path/to/data.csv',sep=",", encoding="utf-8")
import pandas_profiling
pandas_profiling.ProfileReport(df)
Recommended Posts