Il y avait un article sur la réalisation d'un neurone artificiel avec un circuit quantique, donc je l'ai également implémenté. An artificial neuron implemented on actual quantum processor
Si vous utilisez m qubits, il semble que vous pourrez gérer l'entrée de dimension $ 2 ^ m $. Ici, le calcul est effectué avant l'application de la fonction d'activation telle que la fonction sigmoïde.
Le vecteur d'entrée $ \ vec {i} $ et le vecteur de poids $ \ vec {w} $ sont définis comme suit.
python
\vec{i} = (i_0, i_1, \cdots,i_{m-1}) \\ \vec{w} = (w_0, w_1, \cdots, w_{m-1})
Cependant, $ i_j, w_j \ in \ {-1, 1 } $. Considérons maintenant deux états quantiques.
python
|\psi_i> = \frac{1}{\sqrt{m}} \sum_{j=0}^{m-1} i_j|j> \\
|\psi_w> = \frac{1}{\sqrt{m}} \sum_{j=0}^{m-1} w_j|j>
cependant,
python
U_i |0>^{\otimes N} = |\psi_i> \\
U_w |\psi_i> = |1>^{\otimes N} = |m-1> \\
U_w|\psi_i> = \sum_{j=0}^{m-1} c_j |j> \equiv |\phi_{i,w} >
Trouver le produit interne de deux états quantiques
python
<\psi_w|\psi_i> = <\psi_w|U_w^{\dagger} U_w|\psi_i>=<m-1|\phi_{i,w}> = c_{m-1}
Si vous ajoutez un bit ancilla et activez la porte NON multi-contrôlée avec comme bit cible
python
|\phi_{i,w}>|0>_a = \sum_{j=0}^{m-2} c_j |j>|0>_a + c_{m-1}|m-1>|1>_a
code
État de l'hypergraphe quantique est utilisé pour créer $ U_i $ et $ U_w $.
python
# coding: utf-8
from quantum_hypergraph_state import QuantumHypergraphState
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, execute
from qiskit import BasicAer
import numpy as np
class QuantumNeuron:
def __init__(self, using_qubits, input, weight):
self.num_of_input = using_qubits
self.index = [i for i in range(self.num_of_input)]
self.input = input
self.weight = weight
self.qr = QuantumRegister(self.num_of_input, name='qubits') # input qubits and ancilla bit
self.target = QuantumRegister(1, name='target_bit')
self.qc = QuantumCircuit(self.qr, self.target)
def construct_circuit(self):
inputs = QuantumHypergraphState(self.num_of_input, self.input)
inputs.construct_circuit(self.qc)
weight = QuantumHypergraphState(self.num_of_input, self.weight)
weight.construct_circuit(self.qc, inverse=True)
ancilla_qubits = QuantumRegister(1)
classical = ClassicalRegister(1)
self.qc.add_register(ancilla_qubits)
self.qc.add_register(classical)
self.qc.mct([self.qr[i] for i in range(self.num_of_input)],
self.target[0],
q_ancilla=[ancilla_qubits[i] for i in range(1)])
self.qc.measure(self.target[0], classical[0])
def print_details(self, draw=False):
print('num_of_input: {}'.format(self.num_of_input))
print('index: {}'.format(self.index))
if draw:
print(self.qc.draw())
if __name__ == '__main__':
num_qubits = 2
sample = QuantumNeuron(num_qubits, input=[1, 1, 1, 1], weight=[1, 1, -1, -1])
sample.construct_circuit()
NUM_SHOTS = 10000
seed = 1234
backend = BasicAer.get_backend('qasm_simulator')
results = execute(sample.qc, backend=backend, shots=NUM_SHOTS, seed_simulator=seed).result()
sample.print_details()
counts = results.get_counts()
print(np.sqrt(counts['1'] / NUM_SHOTS) * 2**num_qubits)
Recommended Posts