relation of the Fibonacci number series and the Golden ratio

relation of the Fibonacci number series and the Golden ratio

Fibonacci number series:

[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, ...]

Fibonacci number series displayed by a recurrence relation:

\displaystyle \begin{eqnarray} a_{n} &=& a_{n-2} + a_{n-1} \nonumber\\\ n&\geq&2 \nonumber\\\ a_0 = 0&,& a_1 = 1 \nonumber\\\ \end{eqnarray}

Galden Ratio:

\displaystyle \begin{eqnarray} 1 &:& \frac{1+\sqrt{5}}{2} \nonumber\\\ \frac{-1+\sqrt{5}}{2} &:& 1 \nonumber\\\ \end{eqnarray}

https://en.wikipedia.org/wiki/Fibonacci_number

Fibonacci numbers are strongly related to the golden ratio: Binet's formula expresses the nth Fibonacci number in terms of n and the golden ratio, and implies that the ratio of two consecutive Fibonacci numbers tends to the golden ratio as n increases.

Fibonacci number series by Python

f = [0,1]
for _ in range(50):
    f+=[f[-1]+f[-2]]
print(f)
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418, 317811, 514229, 832040, 1346269, 2178309, 3524578, 5702887, 9227465, 14930352, 24157817, 39088169, 63245986, 102334155, 165580141, 267914296, 433494437, 701408733, 1134903170, 1836311903, 2971215073, 4807526976, 7778742049, 12586269025, 20365011074]

Find the Golen ratio from Fibonacci number series

\displaystyle \begin{eqnarray} A &=& \lim_{n \to \infty} \frac{a_{n-1}}{a_n} = \lim_{n \to \infty} \frac{a_{n-2}}{a_{n-1}} \nonumber\\\ \frac{a_{n-1}}{a_n} = \frac{a_{n-1}}{a_{n-2}+a_{n-1}} &=& \left( \frac{a_{n-2}+a_{n-1}}{a_{n-1}}\right)^{-1} = \left(\frac{a_{n-2}}{a_{n-1}}+1\right)^{-1} \nonumber\\\ A &=& \left(A+1\right)^{-1} \nonumber\\\ A \cdot (A + 1) &=& 1 \nonumber\\\ A^2 + A -1 &=& 0 \nonumber\\\ \end{eqnarray}

Solve by SymPy

from sympy import Symbol,solve,factor
a = Symbol('A')
func = a*a + a - 1
a = factor(solve([func, a>0]))
A = float(a.rhs.n())
display(func,a,a.n())
A

\displaystyle A^{2} + A - 1 \displaystyle A = \frac{-1 + \sqrt{5}}{2} \displaystyle A = 0.618033988749895

0.6180339887498949

Numerical iteration

Get the golden ratio from the fibonacci

table = [(i,a/b) for i,(a,b) in enumerate(zip(f,f[1:]))]
table
[(0, 0.0),
 (1, 1.0),
 (2, 0.5),
 (3, 0.6666666666666666),
 (4, 0.6),
 (5, 0.625),
 (6, 0.6153846153846154),
 (7, 0.6190476190476191),
 (8, 0.6176470588235294),
 (9, 0.6181818181818182),
 (10, 0.6179775280898876),
 (11, 0.6180555555555556),
 (12, 0.6180257510729614),
 (13, 0.6180371352785146),
 (14, 0.6180327868852459),
 (15, 0.6180344478216818),
 (16, 0.6180338134001252),
 (17, 0.6180340557275542),
 (18, 0.6180339631667066),
 (19, 0.6180339985218034),
 (20, 0.618033985017358),
 (21, 0.6180339901755971),
 (22, 0.6180339882053251),
 (23, 0.618033988957902),
 (24, 0.6180339886704432),
 (25, 0.6180339887802427),
 (26, 0.618033988738303),
 (27, 0.6180339887543226),
 (28, 0.6180339887482036),
 (29, 0.6180339887505408),
 (30, 0.6180339887496481),
 (31, 0.618033988749989),
 (32, 0.6180339887498588),
 (33, 0.6180339887499086),
 (34, 0.6180339887498896),
 (35, 0.6180339887498969),
 (36, 0.6180339887498941),
 (37, 0.6180339887498951),
 (38, 0.6180339887498948),
 (39, 0.6180339887498949),
 (40, 0.6180339887498948),
 (41, 0.6180339887498949),
 (42, 0.6180339887498948),
 (43, 0.6180339887498949),
 (44, 0.6180339887498949),
 (45, 0.6180339887498949),
 (46, 0.6180339887498949),
 (47, 0.6180339887498949),
 (48, 0.6180339887498949),
 (49, 0.6180339887498949),
 (50, 0.6180339887498949)]

Good. Then, give a bias by -A to see the errors

import math
error = [(i,a/b - A) for i,(a,b) in enumerate(zip(f,f[1:]))]
error
[(0, -0.6180339887498949),
 (1, 0.3819660112501051),
 (2, -0.1180339887498949),
 (3, 0.04863267791677173),
 (4, -0.018033988749894925),
 (5, 0.0069660112501050975),
 (6, -0.0026493733652794837),
 (7, 0.0010136302977241662),
 (8, -0.00038692992636546464),
 (9, 0.00014782943192326314),
 (10, -5.6460660007306984e-05),
 (11, 2.15668056606777e-05),
 (12, -8.237676933475768e-06),
 (13, 3.1465286196574738e-06),
 (14, -1.201864649025275e-06),
 (15, 4.590717869179528e-07),
 (16, -1.7534976970434712e-07),
 (17, 6.697765930763211e-08),
 (18, -2.5583188345557062e-08),
 (19, 9.771908504596638e-09),
 (20, -3.732536946188247e-09),
 (21, 1.4257022229458016e-09),
 (22, -5.445698336714599e-10),
 (23, 2.080070560239733e-10),
 (24, -7.945166746736732e-11),
 (25, 3.034783535582619e-11),
 (26, -1.1591949622413722e-11),
 (27, 4.427680444507587e-12),
 (28, -1.6913137557139635e-12),
 (29, 6.459277557269161e-13),
 (30, -2.468025783741723e-13),
 (31, 9.414691248821327e-14),
 (32, -3.608224830031759e-14),
 (33, 1.3655743202889425e-14),
 (34, -5.329070518200751e-15),
 (35, 1.9984014443252818e-15),
 (36, -7.771561172376096e-16),
 (37, 2.220446049250313e-16),
 (38, -1.1102230246251565e-16),
 (39, 0.0),
 (40, -1.1102230246251565e-16),
 (41, 0.0),
 (42, -1.1102230246251565e-16),
 (43, 0.0),
 (44, 0.0),
 (45, 0.0),
 (46, 0.0),
 (47, 0.0),
 (48, 0.0),
 (49, 0.0),
 (50, 0.0)]

In the above, it indicates that the 39th iteration meets the golden ratio in 10^{-16} order (but the underflow issue occurred).

To avoid the underflow, use decimal module.

import decimal

F = [0,1]
for _ in range(500):
    F+=[F[-1]+F[-2]]

decimal.getcontext().prec = 220
error2 = [(i,decimal.Decimal(a)/decimal.Decimal(b) - (-decimal.Decimal(1) + decimal.Decimal(5).sqrt())/decimal.Decimal(2))
          for i,(a,b) in enumerate(zip(F,F[1:]))]
error2[-50:]
[(451, Decimal('2.6586319293364935194863016834099E-189')),
 (452, Decimal('-1.0155070334308318486203693038262E-189')),
 (453, Decimal('3.878891709560020263748062280696E-190')),
 (454, Decimal('-1.481604794371742305040493803816E-190')),
 (455, Decimal('5.65922673555206651373419130762E-191')),
 (456, Decimal('-2.16163226293877649079763588460E-191')),
 (457, Decimal('8.2567005326426295865871634629E-192')),
 (458, Decimal('-3.1537789685401238517851315416E-192')),
 (459, Decimal('1.2046363729777419687682311629E-192')),
 (460, Decimal('-4.601301503931020545195619462E-193')),
 (461, Decimal('1.757540782015641947904546765E-193')),
 (462, Decimal('-6.71320842115905298518020825E-194')),
 (463, Decimal('2.56421744332073947649515719E-194')),
 (464, Decimal('-9.7944390880316544430526323E-195')),
 (465, Decimal('3.7411428308875685642063259E-195')),
 (466, Decimal('-1.4289894046310512495663445E-195')),
 (467, Decimal('5.458253830055851844927085E-196')),
 (468, Decimal('-2.084867443857043039117801E-196')),
 (469, Decimal('7.96348501515277272426327E-197')),
 (470, Decimal('-3.04178060688788778161170E-197')),
 (471, Decimal('1.16185680551089062057193E-197')),
 (472, Decimal('-4.4378980964478408010398E-198')),
 (473, Decimal('1.6951262342346161974012E-198')),
 (474, Decimal('-6.474806062560077911627E-199')),
 (475, Decimal('2.473155845334071760878E-199')),
 (476, Decimal('-9.44661473442137370999E-200')),
 (477, Decimal('3.60828574992340352128E-200')),
 (478, Decimal('-1.37824251534883685374E-200')),
 (479, Decimal('5.2644179612310704005E-201')),
 (480, Decimal('-2.0108287302048426632E-201')),
 (481, Decimal('7.680682293834575900E-202')),
 (482, Decimal('-2.933759579455301059E-202')),
 (483, Decimal('1.120596444531327286E-202')),
 (484, Decimal('-4.28029754138680789E-203')),
 (485, Decimal('1.63492817884715091E-203')),
 (486, Decimal('-6.2448699515464475E-204')),
 (487, Decimal('2.3853280661678342E-204')),
 (488, Decimal('-9.111142469570543E-205')),
 (489, Decimal('3.480146747033295E-205')),
 (490, Decimal('-1.329297771529334E-205')),
 (491, Decimal('5.07746567554716E-206')),
 (492, Decimal('-1.93941931134804E-206')),
 (493, Decimal('7.4079225849706E-207')),
 (494, Decimal('-2.8295746414305E-207')),
 (495, Decimal('1.0808013393219E-207')),
 (496, Decimal('-4.128293765343E-208')),
 (497, Decimal('1.576867902819E-208')),
 (498, Decimal('-6.02309943106E-209')),
 (499, Decimal('2.30061926507E-209')),
 (500, Decimal('-8.7875836406E-210'))]

Plot iteration

The red dashed line indicates the golden ratio (A = 0.6180339887498949).

The curve indicates the convergence to A in the oscillation condition

from matplotlib import pyplot as plt
import math
plt.figure(figsize=(15,4),dpi=80,facecolor='white')
plt.plot([a/b for a,b in zip(f,f[1:])])
plt.axhline(y=A,color='r',linestyle='dashed',alpha=0.4)
plt.title(r'$\frac{a_n}{a_{n+1}}$')
plt.yticks(ticks=[0,0.5,A,1],labels=['0.0','0.5','A','1.0'])
plt.grid()
plt.show()

output_14_0.png

See the errors

plt.figure(figsize=(16,15),dpi=60,facecolor='white')
for i,(start,end) in enumerate([(0,51),(0,7),(6,13),(20,27),(36,43),(42,49)],start=1):
    plt.subplot(3,2,i)
    plt.plot(*list(zip(*error[start:end])))
    plt.axhline(y=0,color='r',linestyle='dashed',alpha=0.4)
    plt.title(r'$\frac{a_n}{a_{n+1}}-A$, (Error['+str(start)+':'+str(end)+'])')
    plt.grid()
    plt.tight_layout()
plt.show()

output_16_0.png

Spread significant figures

list error issues underflow state, but list error2 works fine by the decimal.Decimal method.

plt.figure(figsize=(16,20),dpi=60,facecolor='white')
for i,(start,end) in enumerate([(0,501),(0,7),(6,13),(20,27),(36,43),(42,49),(194,201),(494,501)],start=1):
    plt.subplot(4,2,i)
    plt.plot(*list(zip(*error2[start:end])))
    plt.axhline(y=0,color='r',linestyle='dashed',alpha=0.4)
    plt.title(r'$\frac{a_n}{a_{n+1}}-A$, (Error2['+str(start)+':'+str(end)+'])')
    plt.grid()
    plt.tight_layout()
plt.show()

output_19_0.png

Recommended Posts

relation of the Fibonacci number series and the Golden ratio
[Django 2.2] Sort and get the value of the relation destination
10. Counting the number of lines
Get the number of digits
Calculate the number of changes
The story of Python and the story of NaN
Count the number of Thai and Arabic characters well in Python
Get the number of views of Qiita
Calculation of the number of Klamer correlations
Get the number of Youtube subscribers
Graph of the history of the number of layers of deep learning and the change in accuracy
Graph the ratio of topcoder, Codeforces and TOEIC by rating (Pandas + seaborn)
The golden combination of embulk and BigQuery shines even more with Digdag
Get the number of articles accessed and likes with Qiita API + Python
I checked the number of closed and opened stores nationwide by Corona
This and that of the inclusion notation.
[pyqtgraph] Set the size ratio of the graph
Count / verify the number of method calls.
Review the concept and terminology of regression
The story of trying deep3d and losing
Easy introduction of python3 series and OpenCV3
Count the number of characters with echo
plot the coordinates of the processing (python) list and specify the number of times in draw ()
Divides the character string by the specified number of characters. In Ruby and Python.
How to count the number of elements in Django and output to a template
Scraping the number of downloads and positive registrations of the new coronavirus contact confirmation app
[Python] A program that calculates the number of updates of the highest and lowest records
About the behavior of copy, deepcopy and numpy.copy
Summary of the differences between PHP and Python
Full understanding of the concepts of Bellman-Ford and Dijkstra
The answer of "1/2" is different between python2 and 3
Organize the meaning of methods, classes and objects
Calculate the total number of combinations with python
Specifying the range of ruby and python arrays
Divide the string into the specified number of characters
Change the color of Fabric errors and warnings
Find the number of days in a month
Compare the speed of Python append and map
Smoothing of time series and waveform data 3 methods (smoothing)
Minimize the number of polishings by combinatorial optimization
General description of the CPUFreq core and CPUFreq notifiers
Organize the super-basic usage of Autotools and pkg-config
I read and implemented the Variants of UKR
Determine the number of classes using the Starges formula
About the * (asterisk) argument of python (and itertools.starmap)
A discussion of the strengths and weaknesses of Python
The nice and regrettable parts of Cloud Datalab
Basic operation of Python Pandas Series and Dataframe (1)
What happens if you graph the number of views and ratings/comments of the video of "Flag-chan!" [Python] [Graph]
Check the processing time and the number of calls for each process in python (cProfile)
[Linear regression] About the number of explanatory variables and the coefficient of determination (adjusted degrees of freedom)