Visualize the number of complaints from life insurance companies

Introduction

[Python] Representing the number of complaints from life insurance companies in a bar graph

Created with reference to

Continued

Convert PDF of details of complaint breakdown to csv with pdfplumber and visualize Visualization of details of life insurance company complaints

Scraping

import requests
from bs4 import BeautifulSoup

url = "https://www.seiho.or.jp/member/complaint/"

headers = {
    "User-Agent": "Mozilla/5.0 (Windows NT 10.0; WOW64; Trident/7.0; rv:11.0) like Gecko"
}

r = requests.get(url, headers=headers)
r.raise_for_status()

soup = BeautifulSoup(r.content, "html.parser")

result = []

for tag in soup.select("div.headMod04.mt30"):

    data = []

    data.append(tag.h3.get_text(strip=True).replace("Co., Ltd.", ""))

    for table in tag.find_next_siblings("table", class_=["mt10", "mt15"], limit=2):

        for td in table.select("tr > td.taR"):

            f = float(td.get_text(strip=True).rstrip("subject%").replace(",", ""))

            data.append(int(f) if f.is_integer() else f)

    result.append(data)
import pandas as pd

df = pd.DataFrame(
    result,
    columns=[
        "Insurance company name",
        "Number of complaints",
        "New contract relationship",
        "Storage related",
        "Conservation relations",
        "Insurance money",
        "Other",
        "Number of in-force contracts",
        "Number of customers",
    ],
).set_index("Insurance company name")

df
Insurance company name Number of complaints New contract relationship Storage related Conservation relations Insurance money Other Number of in-force contracts Number of customers Complaint ratio
AXA Life Insurance 4909 12.9 5.9 19.5 22.2 39.4 4.76064e+06 2.58086e+06 0.00190208
AXA Direct Life Insurance 102 39.2 11.8 16.7 19.6 12.7 159640 120100 0.000849292
Asahi Mutual Life Insurance Company 2895 14.4 7.3 25.5 13.2 39.7 7.77216e+06 1.94576e+06 0.00148785
Aflac life insurance 12699 22.9 12.8 27.4 24.8 12 2.43943e+07 1.52941e+07 0.000830322
Aeon Allianz Life Insurance 11 0 0 0 100 0 16219 16219 0.000678217
SBI Life Insurance 72 52.8 4.2 13.9 16.7 12.5 115621 102485 0.000702542
NN Life Insurance 163 8.6 15.3 49.1 14.1 12.9 504097 186308 0.000874895
FWD Fuji Life Insurance 1098 22 12.4 11.1 24.3 30.1 1.4471e+06 1.07855e+06 0.00101803
ORIX Life Insurance 6587 25 8.2 15.3 39.1 12.5 4.69599e+06 4.69599e+06 0.00140269
Cardif life insurance 31 61.3 0 9.7 16.1 12.9 8891 1.33126e+06 2.32862e-05
Japan Post Insurance 48859 87.9 1.4 5.2 4 1.4 1.79239e+07 1.0281e+07 0.00475235
Crédit Agricole Life Insurance 10 40 0 10 20 30 59089 52001 0.000192304
Gibraltar Life Insurance 7783 4.8 13.4 42.6 22.5 16.7 6.41288e+06 6.41288e+06 0.00121365
Sumitomo Life Insurance Company 11698 6.7 7.1 32.6 23.5 30 1.14377e+07 6.93738e+06 0.00168623
Sony life insurance 3871 9.4 12.2 43.1 14.7 20.7 8.16556e+06 3.70221e+06 0.00104559
Sony Life with Life Insurance 200 12 0 58.5 7.5 22 99225 87701 0.00228048
SOMPO Himawari Life Insurance (former Sompo Japan Nipponkoa Himawari Life Insurance) 1268 13.5 13.8 29.8 25 17.9 4.19732e+06 2.9958e+06 0.000423259
Dai-ichi Life Insurance 5728 9.2 6.7 23.9 15.3 44.8 2.07372e+07 8.03565e+06 0.000712824
Daiichi Frontier Life Insurance 706 37.8 0 16.6 6.8 38.8 1.59389e+06 1.25441e+06 0.000562816
Taiju Life Insurance (formerly Mitsui Life Insurance) 2495 14.6 7.5 22.9 18.2 36.8 2.58049e+06 1.82014e+06 0.00137078
Daido Life Insurance 1431 10.3 8.5 40 15.7 25.6 2.08751e+06 798324 0.00179251
Taiyo Life Insurance 1328 30.6 8.1 22.1 17.6 21.6 7.69601e+06 2.03224e+06 0.000653466
Zurich Life Insurance Company Limited 1794 29.1 16.1 18.5 10 26.3 1.17402e+06 993181 0.00180632
T & D Financial Life Insurance 170 19.4 5.9 40.6 21.8 12.4 329886 281942 0.000602961
Tokio Marine & Nichido Life Insurance 2809 15.3 14.2 30 7.8 32.6 5.97493e+06 3.54450e+06 0.000792494
Nippon Wealth Life Insurance 379 4.7 6.1 28.8 39.1 21.4 332853 274786 0.00137926
Nippon Life Insurance Company 9210 11.1 9.4 37.8 14.6 27 3.30507e+07 1.21611e+07 0.00075733
Neo First Life Insurance 299 36.5 10.7 14.4 22.4 16.1 379944 379944 0.000786958
Hanasaku Life Insurance 86 52.3 15.1 7 16.3 9.3 74374 70904 0.00121291
Fukoku Life Insurance Company 2873 8.8 13.5 35.1 25 17.6 3.79431e+06 1.7536e+06 0.00163834
Fukoku Shinrai Life Insurance 1300 2.5 6.5 13.7 16.2 61.2 591927 449197 0.00289405
Prudential Life Insurance 2055 19.2 12.9 40.7 12.6 14.5 4.181e+06 1.7134e+06 0.00119937
PGF Life (Prudential Gibraltar Financial Life Insurance) 826 17.4 8.2 38.1 17.1 19.1 584295 518397 0.00159337
Manulife life insurance 1089 7.3 13.1 19.2 17.1 43.3 1.56167e+06 1.04053e+06 0.00104658
Mitsui Sumitomo Insurance Aioi Life Insurance 765 15.6 10.1 17.1 31.2 26 3.91038e+06 3.91038e+06 0.000195633
Mitsui Sumitomo Primary Life Insurance 561 20 0 18.7 10.3 51 1.20054e+06 987210 0.000568268
Midori Life Insurance 174 63.8 4.6 7.5 13.8 10.3 249168 203418 0.000855382
Meiji Yasuda Life Insurance Company 7094 9.9 8.9 32.2 21.9 27.1 1.23014e+07 7.04229e+06 0.00100734
MetLife Life Insurance 10905 12 10.7 28 24.1 25.2 9.43914e+06 9.43914e+06 0.0011553
Medicare Life Insurance 388 33 19.6 14.9 20.6 11.9 778313 702099 0.000552629
Lifenet Life Insurance 1114 54.7 7.9 6 8 23.4 387775 246432 0.00452052
Rakuten Life Insurance 678 21.4 14.5 19.9 29.2 15 844748 499039 0.00135861

Visualization

import japanize_matplotlib
import matplotlib as mpl
import matplotlib.pyplot as plt

mpl.rcParams["figure.dpi"] = 200

Number of complaints

df["Number of complaints"].plot.barh(figsize=(15, 15))

insurance01.png

Complaint ratio

df["Complaint ratio"] = df["Number of complaints"] / df["Number of customers"]

df["Complaint ratio"].plot.barh(figsize=(15, 15))

insurance02.png

Breakdown of complaints

df1 = df.reindex(columns = ["New contract relationship", "Storage related", "Conservation relations", "Insurance money", "Other"])

df1.plot.barh(stacked=True, figsize=(15, 15))

insurance03.png

Number of in-force contracts

insurance04.png

Number of customers

insurance05.png

Average number of contracts per person

insurance06.png

Recommended Posts

Visualize the number of complaints from life insurance companies
[Python] Representing the number of complaints from life insurance companies in a bar graph
Visualize details of life insurance company complaints
10. Counting the number of lines
Get the number of digits
Visualize the orbit of Hayabusa2
Examine the margin of error in the number of deaths from pneumonia
Let's visualize the number of people infected with coronavirus with matplotlib
Get the number of views of Qiita
Existence from the viewpoint of Python
Calculation of the number of Klamer correlations
Visualize the center of the rank battle environment from the Pokemon Home API
Get the number of Youtube subscribers
Visualize the response status of the census 2020
Visualize the boundary values of the multi-layer perceptron
Learning notes from the beginning of Python 1
Visualize the effects of deep learning / regularization
Visualize the export data of Piyo log
Learning notes from the beginning of Python 2
Count the number of characters with echo
Let Code Day10 Starting from Zero "1431. Kids With the Greatest Number of Candies"
Visualize the timeline of the number of issues on GitHub assigned to you in Python
Get the contents of git diff from python
Output the number of CPU cores in Python
Visualize the inner layer of a neural network
Calculate the total number of combinations with python
Divide the string into the specified number of characters
Find the number of days in a month
Change the decimal point of logging from, to.
Finding the beginning of Abenomics from NT magnification 2
Minimize the number of polishings by combinatorial optimization
Extract only complete from the result of Trinity
Visualize the behavior of the sorting algorithm with matplotlib
Determine the number of classes using the Starges formula
Finding the beginning of Abenomics from NT magnification 1
The transition of baseball as seen from the data
The story of moving from Pipenv to Poetry
A python script that gets the number of jobs for a specified condition from indeed.com