J'ai décidé de passer de Keras, Tensorflow à PyTorch. Ensuite, j'ai décidé d'implémenter Graph Convolutional Network (GCN) par compound en utilisant PyTorch. Tout d'abord, il est nécessaire de convertir le composé représenté par SMILES en une forme pouvant être utilisée pour l'apprentissage. Vous pouvez implémenter ces processus vous-même, mais j'ai pensé que ce serait plus facile si vous détourniez le pré-traitement de DeepChem, qui est une bibliothèque basée sur Keras et Tensorflow. J'ai donc féturé SMILES avec le ConvMolFeaturizer de DeepChem et l'ai rendu disponible pour DataLoader de Pytorch. Ce faisant, nous prévoyons de nous concentrer sur la mise en œuvre de GCN sans avoir à mettre en œuvre nous-mêmes le processus fastidieux de manipulation des composés.
--Dataset contient simplement une liste de SMILES et des données de réponse correctes. --Pour chaque mini-lot, il est nécessaire de convertir tous les composés du mini-lot en un graphe et de générer une matrice d'ordre de liaison et une matrice adjacente, nous avons donc décidé d'implémenter collate_fn indépendamment et de le donner à l'argument de DataLoader. --Dans collate_fn, SMILES est présenté et répertorié par ConvMolFeaturizer de DeepChem, et il est donné à la méthode agglomerate_mols de la classe ConvMol. En conséquence, la matrice d'ordre de liaison et la matrice adjacente de tous les composés du mini-lot sont générées, elles sont donc converties au format tenseur de PyTorch et renvoyées avec les données de réponse correctes.
import torch
from torch.utils import data
from deepchem.feat.graph_features import ConvMolFeaturizer
from deepchem.feat.mol_graphs import ConvMol
class GCNDataset(data.Dataset):
def __init__(self, smiles_list, label_list):
self.smiles_list = smiles_list
self.label_list = label_list
def __len__(self):
return len(self.smiles_list)
def __getitem__(self, index):
return self.smiles_list[index], self.label_list[index]
def gcn_collate_fn(batch):
from rdkit import Chem
cmf = ConvMolFeaturizer()
mols = []
labels = []
for sample, label in batch:
mols.append(Chem.MolFromSmiles(sample))
labels.append(torch.tensor(label))
conv_mols = cmf.featurize(mols)
multiConvMol = ConvMol.agglomerate_mols(conv_mols)
atom_feature = torch.tensor(multiConvMol.get_atom_features(), dtype=torch.float64)
deg_slice = torch.tensor(multiConvMol.deg_slice, dtype=torch.float64)
membership = torch.tensor(multiConvMol.membership, dtype=torch.float64)
return atom_feature, deg_slice, membership, labels
def main():
dataset = GCNDataset(["CCC", "CCCC", "CCCCC"], [1, 0, 1])
dataloader = data.DataLoader(dataset, batch_size=3, shuffle=False, collate_fn =gcn_collate_fn)
for atom_feature, deg_slice, membership, labels in dataloader:
print(atom_feature)
print(deg_slice)
print(membership)
if __name__ == "__main__":
main()
Le mini-lot avec 3 composés est le suivant. Les caractéristiques de 12 atomes dans les trois composés, la matrice d'ordre des liaisons et la matrice adjacente sont générées. Ceux-ci seront expliqués à un autre moment.
tensor([[1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0.,
0., 1., 0.],
[1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0.,
0., 1., 0.],
[1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0.,
0., 1., 0.],
[1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0.,
0., 1., 0.],
[1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0.,
0., 1., 0.],
[1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0.,
0., 1., 0.],
[1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0.,
1., 0., 0.],
[1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0.,
1., 0., 0.],
[1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0.,
1., 0., 0.],
[1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0.,
1., 0., 0.],
[1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0.,
1., 0., 0.],
[1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0.,
1., 0., 0.]], dtype=torch.float64)
tensor([[ 0., 0.],
[ 0., 6.],
[ 6., 6.],
[12., 0.],
[12., 0.],
[12., 0.],
[12., 0.],
[12., 0.],
[12., 0.],
[12., 0.],
[12., 0.]], dtype=torch.float64)
tensor([0., 0., 1., 1., 2., 2., 0., 1., 1., 2., 2., 2.], dtype=torch.float64)
À l'avenir, j'écrirai le code du modèle GCN et le code d'apprentissage à l'aide de ce DataLoader.
Comparé à la sensation d'étroit de Keras et à l'innocence de Tensorflow, la justesse de PyTorch est très confortable (pour le moment).
Recommended Posts