Enregistrez le tweet avec tweepy et mettez-le dans word2vec pour jouer Je l'ai copié et collé en référence à divers endroits, il n'y a donc pas beaucoup de nouveauté. L'un des objectifs était d'avoir 'Hota-Man + Woman = Lori'.
CentOS7 Anaconda2-4.1.0
tweepy MeCab mecab-python gensim
Je me fiche d'être redondant ici et là.
TwStream.py
# -*- encoding:utf-8 -*-
import sys
import os
import re
import time
import tweepy
HERE = os.path.abspath(os.path.dirname(__file__))
CK = ''
CS = ''
AT = ''
AS = ''
class MyListener(tweepy.StreamListener):
def __init__(self):
super(MyListener, self).__init__()
def on_status(self, status):
try:
tw = status.text.strip()
#Tweet japonais uniquement
if re.search(u'[Ah-Hmm-Vers le bas]', tw) is not None:
with open(HERE + '/stream.txt', 'a') as f:
#Il n'y a pas d'onglet dans le tweet, alors utilisez-le comme délimiteur
f.write(tw.encode('utf-8') + '\n\t\n')
print tw.encode('utf-8')
except tweepy.TweepError as e:
print e.reason
if 'u\'code\': 88' in e.reason:
print 'wait 15 min'
time.sleep(15*60)
def on_error(self, status_code):
print 'error ', status_code
if status_code == 420:
print 'wait 15 min'
time.sleep(15*60)
time.sleep(10)
def on_limit(self, status):
print 'limit'
time.sleep(10)
def on_timeout(self, status):
print 'timeout'
time.sleep(10)
if __name__ == '__main__':
while True:
try:
auth = tweepy.OAuthHandler(CK, CS)
auth.set_access_token(AT, AS)
print 'auth set'
st = tweepy.Stream(auth, MyListener())
print 'sampling'
st.sample()
except tweepy.TweepError as e:
st.disconnect()
print e.reason
if 'u\'code\': 88' in e.reason:
print 'wait 15 min'
time.sleep(15*60)
except KeyboardInterrupt:
st.disconnect()
break
except:
st.disconnect()
continue
Renommez maintenant "stream.txt" en "raw.txt ".
W2V.py
# -*- encoding:utf-8 -*-
import sys
import os
import MeCab
import gensim
from gensim.models import word2vec
#Chemin de ce fichier
HERE = os.path.abspath(os.path.dirname(__file__))
sys.path.append(HERE)
#Module fait maison
from MeCabRW import *
from ProcStr import *
if __name__ == '__main__':
MODEL = HERE + '/twitter.model'
try:
#Charger s'il y a un modèle
print 'loading model'
model = word2vec.Word2Vec.load(MODEL)
print 'model loaded'
except:
#Créer sinon
print 'model not loaded'
print 'creating model'
# mt = MeCab.Tagger('-Owakati')Est possible
mt = mtWakatiNeo()
avoid = ['RT']
mecabParseRW(HERE + '/raw.txt', HERE + '/sep.txt', mt, avoid)
#Lire les données de la division
corp = word2vec.Text8Corpus(HERE + '/sep.txt')
#Vous permet d'analyser phrase par phrase
phrcorp = gensim.models.Phrases(corp)
model = word2vec.Word2Vec(phrcorp[corp], size=2000, min_count=2)
model.save(MODEL)
print 'creating done'
pos = [u'Shota', u'femme']
neg = [u'Homme']
sim = model.most_similar(positive=pos, negative=neg)
print '+: ', ' '.join([i.encode('utf-8') for i in pos])
print '-: ', ' '.join([i.encode('utf-8') for i in neg])
print
for i, j in sim:
print i.encode('utf-8'), '\t', j
MeCabRW.py
# -*- coding: utf-8 -*-
import re
import MeCab
def mtWakatiNeo():
opt = '-O wakati -d /usr/lib64/mecab/dic/mecab-ipadic-neologd'
return MeCab.Tagger(opt)
def mecabParseRW(pathIn, pathOut, mt, avoid=[]):
with open(pathIn, 'r') as f:
sIn = f.read()
#url et@[id]Suppression
sIn = re.sub('https?://[A-Za-z0-9/:%#\$&\?\(\)~\.=\+\-]+', ' ', sIn)
sIn = re.sub('@[A-Za-z0-9_]+', ' ', sIn)
sOut = []
for i in sIn.split('\n\t\n'):
if all([j not in i for j in avoid]):
p = mt.parse(i) #Parfois ça devient Aucun ici
if type(p) == str: #Vérification de type
try:
p.decode('utf-8')
sOut.append(p)
except:
continue
sOut = '\n\t\n'.join(sOut)
with open(pathOut, 'w') as f:
f.write(sOut)
return sOut
Collectez et exécutez environ 60 Mo de tweets
loading model
model loaded
+:Shota femme
-:Homme
Singe 0.833452105522
Macaron 0.832771897316
Lori 0.830695152283
Compliment 0.828270435333
Parlant_0.825944542885
Umehara 0.825801610947
Arisa 0.822319507599
Petit lait 0.818123817444
cent_0.817329347134
Honda Tsubasa 0.816138386726
N'est-ce pas un bon sentiment? La formule inverse a le même sentiment.
loading model
model loaded
+:Homme Lori
-:femme
Violet 0.847893893719
cent_0.824845731258
Shota 0.82099032402
Faire 0.81635427475
Tsumugi 0.813044965267
Princesse 0.812274694443
Parodie 0.809535622597
Mob 0.804774940014
Blanc 0.802413225174
Cheveux noirs 0.800325155258
Je voulais vraiment le faire avec Windows + Python3, mais cela s'est produit à cause du code de caractère et des matériaux existants. Je n'ai utilisé que Python3, donc il peut y avoir une écriture étrange.
http://docs.tweepy.org/en/v3.5.0/streaming_how_to.html https://radimrehurek.com/gensim/models/phrases.html#module-gensim.models.phrases http://tjo.hatenablog.com/entry/2014/06/19/233949
Recommended Posts