yukicoder contest 273 Participation record

yukicoder contest 273 Participation record

A 1279 Array Battle

It seems that the score when a i </ sub> is sorted in descending order and b i </ sub> is sorted in ascending order is always the maximum value, but the same maximum value is used. If there are more than one, I can't think of a way to solve how many. If you think about it carefully, N ≤ 9 and 9! ≒ 3.6 × 10 5 </ sup>, so I was able to try all of them.

from itertools import permutations

N = int(input())
a = list(map(int, input().split()))
b = list(map(int, input().split()))

d = {}
for x in permutations(a):
    t = 0
    for i in range(N):
        t += max(x[i] - b[i], 0)
    d.setdefault(t, 0)
    d[t] += 1
print(d[max(d)])

B 1280 Beyond C

The probability is the number of N × M combinations that exceed C divided by N × M. If b is sorted, the combination with a i </ sub> exceeds C. The number of i </ sub> can be calculated by * O * (log M </ i>), so * O * ((* N * + * M *) log M </ i>) and can be solved. You may sort a.

from bisect import bisect_left

N, M, C = map(int, input().split())
a = list(map(int, input().split()))
b = list(map(int, input().split()))

b.sort()
c = 0
for x in a:
    t = ((C + 1) + x - 1) // x
    c += M - bisect_left(b, t)
print(c / (N * M))

D 1282 Display Elements

Since it is a chance to get a big score later, it seems that the maximum value is to put out a in ascending order. It is difficult to find the number of sheets smaller than a i </ sub> from the accumulated b If you want to use, you have to keep the sort, and every time you sort naive, it becomes * O * (* N * 2 </ sup> log N </ i>) If you divide the array into two, small and large, and sort only the smaller one each time, you can AC by reducing the amount of calculation.

from bisect import bisect_left

N = int(input())
a = list(map(int, input().split()))
b = list(map(int, input().split()))

a.sort()
t0 = []
t1 = []
result = 0
for i in range(N):
    result += bisect_left(t0, a[i])
    t1.append(b[i])
    t1.sort()
    result += bisect_left(t1, a[i])
    if len(t1) == 300:
        t0.extend(t1)
        t0.sort()
        t1.clear()
print(result)

Postscript: It seems that the assumed solution was coordinate compression + BIT, so I still solved it.

def bit_add(bit, i, x):
    i += 1
    n = len(bit)
    while i <= n:
        bit[i - 1] += x
        i += i & -i


def bit_sum(bit, i):
    result = 0
    i += 1
    while i > 0:
        result += bit[i - 1]
        i -= i & -i
    return result


def bit_query(bit, start, stop):
    if start == 0:
        return bit_sum(bit, stop - 1)
    else:
        return bit_sum(bit, stop - 1) - bit_sum(bit, start - 1)


N = int(input())
a = list(map(int, input().split()))
b = list(map(int, input().split()))

t = {j: i for i, j in enumerate(sorted(set(a + b)))}
bit = [0] * len(t)

a.sort()
result = 0
for i in range(N):
    bit_add(bit, t[b[i]], 1)
    result += bit_query(bit, 0, t[a[i]])
print(result)

E 1283 Extra Fee

You don't have to pay a one-time toll. I did a breadth-first search by dividing the DP table before and after using the right. I didn't need the Dijkstra method. If I set the initial value to math.MaxInt64, it overflowed. I died and made math.MaxInt32, but this time it was too small to WA and settled on math.MaxInt64 >> 1.

package main

import (
	"bufio"
	"fmt"
	"math"
	"os"
	"strconv"
)

func min(x, y int) int {
	if x < y {
		return x
	}
	return y
}

func main() {
	defer flush()

	N := readInt()
	M := readInt()

	c := make([][]int, N)
	for i := 0; i < N; i++ {
		c[i] = make([]int, N)
	}

	for i := 0; i < M; i++ {
		h := readInt() - 1
		w := readInt() - 1
		c[h][w] = readInt()
	}

	dpa := make([][]int, N)
	dpb := make([][]int, N)
	for i := 0; i < N; i++ {
		dpa[i] = make([]int, N)
		dpb[i] = make([]int, N)
		for j := 0; j < N; j++ {
			dpa[i][j] = math.MaxInt64 >> 1
			dpb[i][j] = math.MaxInt64 >> 1
		}
	}
	dpa[0][0] = 0

	q := make([][3]int, 0)
	q = append(q, [3]int{0, 0, 0})
	for len(q) != 0 {
		y := q[0][0]
		x := q[0][1]
		t := q[0][2]
		q = q[1:]

		if t == 0 {
			if y != 0 {
				if dpa[y-1][x] > dpa[y][x]+1+c[y-1][x] {
					dpa[y-1][x] = dpa[y][x] + 1 + c[y-1][x]
					q = append(q, [3]int{y - 1, x, 0})
				}
				if c[y-1][x] > 0 {
					if dpb[y-1][x] > dpa[y][x]+1 {
						dpb[y-1][x] = dpa[y][x] + 1
						q = append(q, [3]int{y - 1, x, 1})
					}
				}
			}
			if y != N-1 {
				if dpa[y+1][x] > dpa[y][x]+1+c[y+1][x] {
					dpa[y+1][x] = dpa[y][x] + 1 + c[y+1][x]
					q = append(q, [3]int{y + 1, x, 0})
				}
				if c[y+1][x] > 0 {
					if dpb[y+1][x] > dpa[y][x]+1 {
						dpb[y+1][x] = dpa[y][x] + 1
						q = append(q, [3]int{y + 1, x, 1})
					}
				}
			}
			if x != 0 {
				if dpa[y][x-1] > dpa[y][x]+1+c[y][x-1] {
					dpa[y][x-1] = dpa[y][x] + 1 + c[y][x-1]
					q = append(q, [3]int{y, x - 1, 0})
				}
				if c[y][x-1] > 0 {
					if dpb[y][x-1] > dpa[y][x]+1 {
						dpb[y][x-1] = dpa[y][x] + 1
						q = append(q, [3]int{y, x - 1, 1})
					}
				}
			}
			if x != N-1 {
				if dpa[y][x+1] > dpa[y][x]+1+c[y][x+1] {
					dpa[y][x+1] = dpa[y][x] + 1 + c[y][x+1]
					q = append(q, [3]int{y, x + 1, 0})
				}
				if c[y][x+1] > 0 {
					if dpb[y][x+1] > dpa[y][x]+1 {
						dpb[y][x+1] = dpa[y][x] + 1
						q = append(q, [3]int{y, x + 1, 1})
					}
				}
			}
		} else {
			if y != 0 {
				if dpb[y-1][x] > dpb[y][x]+1+c[y-1][x] {
					dpb[y-1][x] = dpb[y][x] + 1 + c[y-1][x]
					q = append(q, [3]int{y - 1, x, 1})
				}
			}
			if y != N-1 {
				if dpb[y+1][x] > dpb[y][x]+1+c[y+1][x] {
					dpb[y+1][x] = dpb[y][x] + 1 + c[y+1][x]
					q = append(q, [3]int{y + 1, x, 1})
				}
			}
			if x != 0 {
				if dpb[y][x-1] > dpb[y][x]+1+c[y][x-1] {
					dpb[y][x-1] = dpb[y][x] + 1 + c[y][x-1]
					q = append(q, [3]int{y, x - 1, 1})
				}
			}
			if x != N-1 {
				if dpb[y][x+1] > dpb[y][x]+1+c[y][x+1] {
					dpb[y][x+1] = dpb[y][x] + 1 + c[y][x+1]
					q = append(q, [3]int{y, x + 1, 1})
				}
			}
		}
	}
	println(min(dpa[N-1][N-1], dpb[N-1][N-1]))
}

const (
	ioBufferSize = 1 * 1024 * 1024 // 1 MB
)

var stdinScanner = func() *bufio.Scanner {
	result := bufio.NewScanner(os.Stdin)
	result.Buffer(make([]byte, ioBufferSize), ioBufferSize)
	result.Split(bufio.ScanWords)
	return result
}()

func readString() string {
	stdinScanner.Scan()
	return stdinScanner.Text()
}

func readInt() int {
	result, err := strconv.Atoi(readString())
	if err != nil {
		panic(err)
	}
	return result
}

var stdoutWriter = bufio.NewWriter(os.Stdout)

func flush() {
	stdoutWriter.Flush()
}

func println(args ...interface{}) (int, error) {
	return fmt.Fprintln(stdoutWriter, args...)
}

Recommended Posts