Planar skeleton analysis with Python (4) Handling of forced displacement

Overview

In this program, boundary conditions are introduced without changing the size of the stiffness matrix, and simultaneous equations are solved. While using this method, consider a solution when a non-zero forced displacement is given. This is the replacement of unknowns and known numbers in simultaneous linear equations, and is not so difficult as a way of thinking.

As a simple example, consider the following simultaneous linear equations. $ \begin{align} & k_{11} x_1 + k_{12} x_2 + k_{13} x_3 = f_1 \\\ & k_{21} x_2 + k_{22} x_2 + k_{23} x_3 = f_2 \\\ & k_{31} x_3 + k_{32} x_2 + k_{33} x_3 = f_3 \\\ \end{align} $

Here, if the unknown number is $ x_1, x_3, f_2 $ and the known number is $ f_1, f_3, x_2 , it is necessary to rewrite as follows in order to perform the matrix operation. $ \begin{align} & k_{11} x_1 + 0 + k_{13} x_3 = f_1 - k_{12} x_2 \
& k_{21} x_2 - f_2 + k_{23} x_3 = 0 - k_{22} x_2 \
& k_{31} x_3 + 0 + k_{33} x_3 = f_3 - k_{32} x_2 \
\end{align} $$

The above relationship can be expanded and considered as follows.

Original stiffness equation

\begin{equation} \begin{bmatrix} k_{11} & \ldots & k_{1i} & \ldots & k_{1j} & \ldots & k_{1n} \\\ \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\\ k_{i1} & \ldots & k_{ii} & \ldots & k_{ij} & \ldots & k_{in} \\\ \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\\ k_{j1} & \ldots & k_{ji} & \ldots & k_{jj} & \ldots & k_{jn} \\\ \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\\ k_{n1} & \ldots & k_{ni} & \ldots & k_{nj} & \ldots & k_{nn} \end{bmatrix} \begin{Bmatrix} \delta_1 \\\ \vdots \\\ \delta_i \\\ \vdots \\\ \delta_j \\\ \vdots \\\ \delta_n \end{Bmatrix} =\begin{Bmatrix} f_1 \\\ \vdots \\\ f_i \\\ \vdots \\\ f_j \\\ \vdots \\\ f_n \end{Bmatrix} \end{equation}

Stiff equation after the introduction of boundary conditions

If $ \ delta_i $ and $ \ delta_j $ are known, let $ k_ {ii} $ and $ k_ {jj} $ in the stiffness matrix be $ 1 $, and the other elements of the $ i $ and $ j $ columns. Is set to zero. It also transfers the effects of the $ i $ and $ j $ columns in the stiffness matrix to the right side. $ \begin{equation} \begin{bmatrix} k_{11} & \ldots & 0 & \ldots & 0 & \ldots & k_{1n} \\\ \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\\ k_{i1} & \ldots & 1 & \ldots & 0 & \ldots & k_{in} \\\ \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\\ k_{j1} & \ldots & 0 & \ldots & 1 & \ldots & k_{jn} \\\ \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\\ k_{n1} & \ldots & 0 & \ldots & 0 & \ldots & k_{nn} \end{bmatrix} \begin{Bmatrix} \delta_1 \\\ \vdots \\\ -f_i \\\ \vdots \\\ -f_j \\\ \vdots \\\ \delta_n \end{Bmatrix} =\begin{Bmatrix} f_1 \\\ \vdots \\\ 0 \\\ \vdots \\\ 0 \\\ \vdots \\\ f_n \end{Bmatrix} -\delta_i \begin{Bmatrix} k_{1i} \\\ \vdots \\\ k_{ii} \\\ \vdots \\\ k_{ji} \\\ \vdots \\\ k_{ni} \end{Bmatrix} -\delta_j \begin{Bmatrix} k_{1j} \\\ \vdots \\\ k_{ij} \\\ \vdots \\\ k_{jj} \\\ \vdots \\\ k_{nj} \end{Bmatrix} \end{equation} $

Hotfix

py_frame_r.py


import numpy as np
import sys
import time

def print_inp(fnameW,npoin,nele,nsec,npfix,nlod,ae,x,fp,mpfix,rdis,node):
    fout=open(fnameW,'w')
    # print out of input data
    print('{0:>5s} {1:>5s} {2:>5s} {3:>5s} {4:>5s}'.format('npoin','nele','nsec','npfix','nlod'),file=fout)
    print('{0:5d} {1:5d} {2:5d} {3:5d} {4:5d}'.format(npoin,nele,nsec,npfix,nlod),file=fout)
    print('{0:>5s} {1:>15s} {2:>15s} {3:>15s}'.format('sec','A','I','E'),file=fout)
    for i in range(0,nsec):
        print('{0:5d} {1:15.7e} {2:15.7e} {3:15.7e}'.format(i+1,ae[0,i],ae[1,i],ae[2,i]),file=fout)
    print('{0:>5s} {1:>15s} {2:>15s} {3:>15s} {4:>15s} {5:>15s} {6:>5s} {7:>5s} {8:>5s}'
    .format('node','x','y','fx','fy','fr','kox','koy','kor'),file=fout)
    for i in range(0,npoin):
        lp=i+1
        print('{0:5d} {1:15.7e} {2:15.7e} {3:15.7e} {4:15.7e} {5:15.7e} {6:5d} {7:5d} {8:5d}'
        .format(lp,x[0,i],x[1,i],fp[3*lp-3],fp[3*lp-2],fp[3*lp-1],mpfix[0,i],mpfix[1,i],mpfix[2,i]),file=fout)
    print('{0:>5s} {1:>5s} {2:>5s} {3:>5s} {4:>15s} {5:>15s} {6:>15s}'
    .format('node','kox','koy','kor','rdis_x','rdis_y','rdis_r'),file=fout)
    for i in range(0,npoin):
        if 0<mpfix[0,i]+mpfix[1,i]+mpfix[2,i]:
            lp=i+1
            print('{0:5d} {1:5d} {2:5d} {3:5d} {4:15.7e} {5:15.7e} {6:15.7e}'
            .format(lp,mpfix[0,i],mpfix[1,i],mpfix[2,i],rdis[0,i],rdis[1,i],rdis[2,i]),file=fout)
    print('{0:>5s} {1:>5s} {2:>5s} {3:>5s}'.format('elem','i','j','sec'),file=fout)
    for ne in range(0,nele):
        print('{0:5d} {1:5d} {2:5d} {3:5d}'.format(ne+1,node[0,ne],node[1,ne],node[2,ne]),file=fout)
    fout.close()

def print_out(fnameW,npoin,nele,disg,fsec):
    fout=open(fnameW,'a')
    # displacement
    print('{0:>5s} {1:>15s} {2:>15s} {3:>15s}'.format('node','dis-x','dis-y','dis-r'),file=fout)
    for i in range(0,npoin):
        lp=i+1
        print('{0:5d} {1:15.7e} {2:15.7e} {3:15.7e}'.format(lp,disg[3*lp-3],disg[3*lp-2],disg[3*lp-1]),file=fout)
    # section force
    print('{0:>5s} {1:>15s} {2:>15s} {3:>15s} {4:>15s} {5:>15s} {6:>15s}'
    .format('elem','N_i','S_i','M_i','N_j','S_j','M_j'),file=fout)
    for ne in range(0,nele):
        print('{0:5d} {1:15.7e} {2:15.7e} {3:15.7e} {4:15.7e} {5:15.7e} {6:15.7e}'
        .format(ne+1,fsec[0,ne],fsec[1,ne],fsec[2,ne],fsec[3,ne],fsec[4,ne],fsec[5,ne]),file=fout)
    fout.close()


def STIFF(i,node,x,ae):
    ek=np.zeros([6,6],dtype=np.float64) # local stiffness matrix
    tt=np.zeros([6,6],dtype=np.float64) # transformation matrix
    mpf=node[0,i]
    mps=node[1,i]
    x1=x[0,mpf-1]
    y1=x[1,mpf-1]
    x2=x[0,mps-1]
    y2=x[1,mps-1]
    xx=x2-x1
    yy=y2-y1
    el=np.sqrt(xx**2+yy**2)
    mb=node[2,i]
    aa=ae[0,mb-1]
    am=ae[1,mb-1]
    ee=ae[2,mb-1]
    EA=ee*aa
    EI=ee*am
    ek[0,0]= EA/el; ek[0,1]=         0.0; ek[0,2]=        0.0; ek[0,3]=-EA/el; ek[0,4]=         0.0; ek[0,5]=        0.0
    ek[1,0]=   0.0; ek[1,1]= 12*EI/el**3; ek[1,2]= 6*EI/el**2; ek[1,3]=   0.0; ek[1,4]=-12*EI/el**3; ek[1,5]= 6*EI/el**2
    ek[2,0]=   0.0; ek[2,1]=  6*EI/el**2; ek[2,2]= 4*EI/el   ; ek[2,3]=   0.0; ek[2,4]= -6*EI/el**2; ek[2,5]= 2*EI/el
    ek[3,0]=-EA/el; ek[3,1]=         0.0; ek[3,2]=        0.0; ek[3,3]= EA/el; ek[3,4]=         0.0; ek[3,5]=        0.0
    ek[4,0]=   0.0; ek[4,1]=-12*EI/el**3; ek[4,2]=-6*EI/el**2; ek[4,3]=   0.0; ek[4,4]= 12*EI/el**3; ek[4,5]=-6*EI/el**2
    ek[5,0]=   0.0; ek[5,1]=  6*EI/el**2; ek[5,2]= 2*EI/el   ; ek[5,3]=   0.0; ek[5,4]= -6*EI/el**2; ek[5,5]= 4*EI/el
    s=yy/el
    c=xx/el
    tt[0,0]=  c; tt[0,1]=  s; tt[0,2]=0.0; tt[0,3]=0.0; tt[0,4]=0.0; tt[0,5]=0.0
    tt[1,0]= -s; tt[1,1]=  c; tt[1,2]=0.0; tt[1,3]=0.0; tt[1,4]=0.0; tt[1,5]=0.0
    tt[2,0]=0.0; tt[2,1]=0.0; tt[2,2]=1.0; tt[2,3]=0.0; tt[2,4]=0.0; tt[2,5]=0.0
    tt[3,0]=0.0; tt[3,1]=0.0; tt[3,2]=0.0; tt[3,3]=  c; tt[3,4]=  s; tt[3,5]=0.0
    tt[4,0]=0.0; tt[4,1]=0.0; tt[4,2]=0.0; tt[4,3]= -s; tt[4,4]=  c; tt[4,5]=0.0
    tt[5,0]=0.0; tt[5,1]=0.0; tt[5,2]=0.0; tt[5,3]=0.0; tt[5,4]=0.0; tt[5,5]=1.0
    return ek,tt,mpf,mps

# Main routine
start=time.time()
args = sys.argv
fnameR=args[1] # input data file
fnameW=args[2] # output data file

f=open(fnameR,'r')
text=f.readline()
text=text.strip()
text=text.split()
npoin=int(text[0]) # Number of nodes
nele =int(text[1]) # Number of elements
nsec =int(text[2]) # Number of sections
npfix=int(text[3]) # Number of restricted nodes
nlod =int(text[4]) # Number of loaded nodes
n=3*npoin

x    =np.zeros([2,npoin],dtype=np.float64) # Coordinates of nodes
ae   =np.zeros([3,nsec],dtype=np.float64)  # Section characteristics
node =np.zeros([3,nele],dtype=np.int)      # Node-element relationship
fp   =np.zeros(3*npoin,dtype=np.float64)   # External force vector
mpfix=np.zeros([3,npoin],dtype=np.int)     # Ristrict conditions
rdis =np.zeros([3,npoin],dtype=np.float64) # Ristricted displacement
ir   =np.zeros(6,dtype=np.int)             # Work vector for matrix assembly
gk   =np.zeros([n,n],dtype=np.float64)     # Global stiffness matrix
fsec =np.zeros([6,nele],dtype=np.float64)  # Section force vector
work =np.zeros(6,dtype=np.float64)         # work vector for section force calculation

# section characteristics
for i in range(0,nsec):
    text=f.readline()
    text=text.strip()
    text=text.split()
    ae[0,i]=float(text[0]) #section area
    ae[1,i]=float(text[1]) #moment of inertia
    ae[2,i]=float(text[2]) #elastic modulus
# element-node
for i in range(0,nele):
    text=f.readline()
    text=text.strip()
    text=text.split()
    node[0,i]=int(text[0]) #node_1
    node[1,i]=int(text[1]) #node_2
    node[2,i]=int(text[2]) #section characteristic number
# node coordinates
for i in range(0,npoin):
    text=f.readline()
    text=text.strip()
    text=text.split()
    x[0,i]=float(text[0]) # x-coordinate
    x[1,i]=float(text[1]) # y-coordinate
# boundary conditions (0:free, 1:restricted)
for i in range(0,npfix):
    text=f.readline()
    text=text.strip()
    text=text.split()
    lp=int(text[0])             #fixed node
    mpfix[0,lp-1]=int(text[1])  #fixed in x-direction
    mpfix[1,lp-1]=int(text[2])  #fixed in y-direction
    mpfix[2,lp-1]=int(text[3])  #fixed in rotation
    rdis[0,lp-1]=float(text[4]) #fixed displacement in x-direction
    rdis[1,lp-1]=float(text[5]) #fixed displacement in y-direction
    rdis[2,lp-1]=float(text[6]) #fixed displacement in z-direction
# load
if 1<=nlod:
    for i in range(0,nlod):
        text=f.readline()
        text=text.strip()
        text=text.split()
        lp=int(text[0])           #loaded node
        fp[3*lp-3]=float(text[1]) #load in x-direction
        fp[3*lp-2]=float(text[2]) #load in y-direction
        fp[3*lp-1]=float(text[3]) #load in rotation
f.close()

print_inp(fnameW,npoin,nele,nsec,npfix,nlod,ae,x,fp,mpfix,rdis,node)

# assembly of stiffness matrix
for ne in range(0,nele):
    ek,tt,mpf,mps=STIFF(ne,node,x,ae)
    ck=np.dot(np.dot(tt.T,ek),tt)
    ir[5]=3*mps-1
    ir[4]=ir[5]-1
    ir[3]=ir[4]-1
    ir[2]=3*mpf-1
    ir[1]=ir[2]-1
    ir[0]=ir[1]-1
    for i in range(0,6):
        for j in range(0,6):
            it=ir[i]
            jt=ir[j]
            gk[it,jt]=gk[it,jt]+ck[i,j]

# treatment of boundary conditions
for i in range(0,npoin):
    for j in range(0,3):
        if mpfix[j,i]==1:
            iz=i*3+j
            fp[iz]=0.0
            for k in range(0,n):
                fp[k]=fp[k]-rdis[j,i]*gk[k,iz]
                gk[k,iz]=0.0
            gk[iz,iz]=1.0

# solution of simultaneous linear equations
disg = np.linalg.solve(gk, fp)

# recovery of restricted displacements
for i in range(0,npoin):
    for j in range(0,3):
        if mpfix[j,i]==1:
            iz=i*3+j
            for k in range(0,n):
                disg[iz]=rdis[j,i]

# calculation of section force
for ne in range(0,nele):
    ek,tt,mpf,mps=STIFF(ne,node,x,ae)
    work[0]=disg[3*mpf-3]; work[1]=disg[3*mpf-2]; work[2]=disg[3*mpf-1]
    work[3]=disg[3*mps-3]; work[4]=disg[3*mps-2]; work[5]=disg[3*mps-1]
    fsec[:,ne]=np.dot(ek,np.dot(tt,work))

print_out(fnameW,npoin,nele,disg,fsec)

dtime=time.time()-start
print('n={0}  time={1:.3f}'.format(n,dtime)+' sec')
fout=open(fnameW,'a')
print('n={0}  time={1:.3f}'.format(n,dtime)+' sec',file=fout)
fout.close()

Data creation and execution script

cat << EOT > inp_r0.txt
6 5 2 3 1
1.0 1.0 1.0
1.0 1.0 1.0
1 2 1
3 4 1
5 6 1
2 4 2
4 6 2
0 0
0 3.5
6 0
6 3.5
12 0
12 3.5
1 1 1 1 0 0 0
3 1 1 1 0 0 0
5 1 1 1 0 0 0
2 4 0 0
EOT

cat << EOT > inp_r1.txt
6 5 2 4 0
1.0 1.0 1.0
1.0 1.0 1.0
1 2 1
3 4 1
5 6 1
2 4 2
4 6 2
0 0
0 3.5
6 0
6 3.5
12 0
12 3.5
1 1 1 1 0 0 0
3 1 1 1 0 0 0
5 1 1 1 0 0 0
2 1 1 1 16.079284 2.3039125 -4.5858390
EOT

python3 py_frame_r.py inp_r0.txt out_r0.txt
python3 py_frame_r.py inp_r1.txt out_r1.txt

Execution example

Case-1 Specify load

out_r0.txt


npoin  nele  nsec npfix  nlod
    6     5     2     3     1
  sec               A               I               E
    1   1.0000000e+00   1.0000000e+00   1.0000000e+00
    2   1.0000000e+00   1.0000000e+00   1.0000000e+00
 node               x               y              fx              fy              fr   kox   koy   kor
    1   0.0000000e+00   0.0000000e+00   0.0000000e+00   0.0000000e+00   0.0000000e+00     1     1     1
    2   0.0000000e+00   3.5000000e+00   4.0000000e+00   0.0000000e+00   0.0000000e+00     0     0     0
    3   6.0000000e+00   0.0000000e+00   0.0000000e+00   0.0000000e+00   0.0000000e+00     1     1     1
    4   6.0000000e+00   3.5000000e+00   0.0000000e+00   0.0000000e+00   0.0000000e+00     0     0     0
    5   1.2000000e+01   0.0000000e+00   0.0000000e+00   0.0000000e+00   0.0000000e+00     1     1     1
    6   1.2000000e+01   3.5000000e+00   0.0000000e+00   0.0000000e+00   0.0000000e+00     0     0     0
 node   kox   koy   kor          rdis_x          rdis_y          rdis_r
    1     1     1     1   0.0000000e+00   0.0000000e+00   0.0000000e+00
    3     1     1     1   0.0000000e+00   0.0000000e+00   0.0000000e+00
    5     1     1     1   0.0000000e+00   0.0000000e+00   0.0000000e+00
 elem     i     j   sec
    1     1     2     1
    2     3     4     1
    3     5     6     1
    4     2     4     2
    5     4     6     2
 node           dis-x           dis-y           dis-r
    1   0.0000000e+00   0.0000000e+00   0.0000000e+00
    2   1.6079284e+01   2.3039125e+00  -4.5858390e+00
    3   0.0000000e+00   0.0000000e+00   0.0000000e+00
    4   5.6044784e+00  -1.4855500e+00  -6.2687943e-01
    5   0.0000000e+00   0.0000000e+00   0.0000000e+00
    6   2.6990174e+00  -8.1836247e-01  -5.5363182e-01
 elem             N_i             S_i             M_i             N_j             S_j             M_j
    1  -6.5826071e-01   2.2541991e+00   5.2550881e+00   6.5826071e-01  -2.2541991e+00   2.6346087e+00
    2   4.2444286e-01   1.2615574e+00   2.3868338e+00  -4.2444286e-01  -1.2615574e+00   2.0286170e+00
    3   2.3381785e-01   4.8424351e-01   1.0056067e+00  -2.3381785e-01  -4.8424351e-01   6.8924562e-01
    4   1.7458009e+00  -6.5826071e-01  -2.6346087e+00  -1.7458009e+00   6.5826071e-01  -1.3149555e+00
    5   4.8424351e-01  -2.3381785e-01  -7.1366148e-01  -4.8424351e-01   2.3381785e-01  -6.8924562e-01
n=18  time=0.005 sec

Case-2 Forced displacement designation

Input the displacement of the load specified point in Case-1 as the forced displacement

out_r1.txt


npoin  nele  nsec npfix  nlod
    6     5     2     4     0
  sec               A               I               E
    1   1.0000000e+00   1.0000000e+00   1.0000000e+00
    2   1.0000000e+00   1.0000000e+00   1.0000000e+00
 node               x               y              fx              fy              fr   kox   koy   kor
    1   0.0000000e+00   0.0000000e+00   0.0000000e+00   0.0000000e+00   0.0000000e+00     1     1     1
    2   0.0000000e+00   3.5000000e+00   0.0000000e+00   0.0000000e+00   0.0000000e+00     1     1     1
    3   6.0000000e+00   0.0000000e+00   0.0000000e+00   0.0000000e+00   0.0000000e+00     1     1     1
    4   6.0000000e+00   3.5000000e+00   0.0000000e+00   0.0000000e+00   0.0000000e+00     0     0     0
    5   1.2000000e+01   0.0000000e+00   0.0000000e+00   0.0000000e+00   0.0000000e+00     1     1     1
    6   1.2000000e+01   3.5000000e+00   0.0000000e+00   0.0000000e+00   0.0000000e+00     0     0     0
 node   kox   koy   kor          rdis_x          rdis_y          rdis_r
    1     1     1     1   0.0000000e+00   0.0000000e+00   0.0000000e+00
    2     1     1     1   1.6079284e+01   2.3039125e+00  -4.5858390e+00
    3     1     1     1   0.0000000e+00   0.0000000e+00   0.0000000e+00
    5     1     1     1   0.0000000e+00   0.0000000e+00   0.0000000e+00
 elem     i     j   sec
    1     1     2     1
    2     3     4     1
    3     5     6     1
    4     2     4     2
    5     4     6     2
 node           dis-x           dis-y           dis-r
    1   0.0000000e+00   0.0000000e+00   0.0000000e+00
    2   1.6079284e+01   2.3039125e+00  -4.5858390e+00
    3   0.0000000e+00   0.0000000e+00   0.0000000e+00
    4   5.6044785e+00  -1.4855500e+00  -6.2687945e-01
    5   0.0000000e+00   0.0000000e+00   0.0000000e+00
    6   2.6990174e+00  -8.1836249e-01  -5.5363183e-01
 elem             N_i             S_i             M_i             N_j             S_j             M_j
    1  -6.5826071e-01   2.2541992e+00   5.2550882e+00   6.5826071e-01  -2.2541992e+00   2.6346088e+00
    2   4.2444286e-01   1.2615574e+00   2.3868339e+00  -4.2444286e-01  -1.2615574e+00   2.0286170e+00
    3   2.3381785e-01   4.8424351e-01   1.0056067e+00  -2.3381785e-01  -4.8424351e-01   6.8924562e-01
    4   1.7458009e+00  -6.5826071e-01  -2.6346087e+00  -1.7458009e+00   6.5826071e-01  -1.3149555e+00
    5   4.8424351e-01  -2.3381785e-01  -7.1366150e-01  -4.8424351e-01   2.3381785e-01  -6.8924562e-01
n=18  time=0.007 sec

Sectional force diagram creation program

Since the output items of the analysis results were changed, the section force diagram creation program was also changed.

py_force.py


import matplotlib.pyplot as plt
import numpy as np
import sys

def calc(ne,node,x,y,d1,d2):
    i=node[0,ne]-1
    j=node[1,ne]-1
    x1=x[i]
    y1=y[i]
    x2=x[j]
    y2=y[j]
    al=np.sqrt((x2-x1)**2+(y2-y1)**2)
    theta=np.arccos((x2-x1)/al)
    x4=x1-d1[ne]*np.sin(theta)
    y4=y1+d1[ne]*np.cos(theta)
    x3=x2-d2[ne]*np.sin(theta)
    y3=y2+d2[ne]*np.cos(theta)
    return x1,x2,x3,x4,y1,y2,y3,y4
    

# Main routine
args = sys.argv
fnameR=args[1] # input data file

f=open(fnameR,'r')
text=f.readline()
text=f.readline()
text=text.strip()
text=text.split()
npoin=int(text[0]) # Number of nodes
nele =int(text[1]) # Number of elements
nsec =int(text[2]) # Number of sections
npfix=int(text[3]) # Number of restricted nodes
nlod =int(text[4]) # Number of loaded nodes

x   =np.zeros(npoin,dtype=np.float64) # Coordinates of nodes
y   =np.zeros(npoin,dtype=np.float64) # Coordinates of nodes
node=np.zeros([2,nele],dtype=np.int)  # Node-element relationship
disx=np.zeros(npoin,dtype=np.float64) # Coordinates of nodes
disy=np.zeros(npoin,dtype=np.float64) # Coordinates of nodes
N1  =np.zeros(nele,dtype=np.float64)  # Section force vector
S1  =np.zeros(nele,dtype=np.float64)  # Section force vector
M1  =np.zeros(nele,dtype=np.float64)  # Section force vector
N2  =np.zeros(nele,dtype=np.float64)  # Section force vector
S2  =np.zeros(nele,dtype=np.float64)  # Section force vector
M2  =np.zeros(nele,dtype=np.float64)  # Section force vector

text=f.readline()
for i in range(0,nsec):
    text=f.readline()

text=f.readline()
for i in range(0,npoin):
    text=f.readline()
    text=text.strip()
    text=text.split()
    x[i]=float(text[1]) # x-coordinate
    y[i]=float(text[2]) # y-coordinate

text=f.readline()
for i in range(0,npfix):
    text=f.readline()

text=f.readline()
for i in range(0,nele):
    text=f.readline()
    text=text.strip()
    text=text.split()
    node[0,i]=int(text[1]) #node_1
    node[1,i]=int(text[2]) #node_2

text=f.readline()
for i in range(0,npoin):
    text=f.readline()
    text=text.strip()
    text=text.split()
    disx[i]=float(text[1]) # displacement in x-direction
    disy[i]=float(text[2]) # displacement in y-direction

text=f.readline()
for i in range(0,nele):
    text=f.readline()
    text=text.strip()
    text=text.split()
    N1[i]=-float(text[1]) # axial force at node-1
    S1[i]= float(text[2]) # shear force at node-1
    M1[i]= float(text[3]) # moment at node-1
    N2[i]= float(text[4]) # axial force at node-2
    S2[i]=-float(text[5]) # shear force at node-2
    M2[i]=-float(text[6]) # moment at node-2
f.close()

nmax=np.max([np.max(np.abs(N1)),np.max(np.abs(N2))])
smax=np.max([np.max(np.abs(S1)),np.max(np.abs(S2))])
mmax=np.max([np.max(np.abs(M1)),np.max(np.abs(M2))])
dmax=np.max([np.max(np.abs(disx)),np.max(np.abs(disy))])

xmin=-3
xmax=13
ymin=-3
ymax=9

scl_dis=1.0
scl_axi=1.0
scl_she=1.0
scl_mom=2.0

for nnn in range(0,4):
    ax=plt.subplot(111)
    ax.set_xlim([xmin,xmax])
    ax.set_ylim([ymin,ymax])
    ax.set_xlabel('x-direction (m)')
    ax.set_ylabel('y-direction (m)')
    ax.spines['right'].set_visible(False)
    ax.spines['top'].set_visible(False)
    ax.yaxis.set_ticks_position('left')
    ax.xaxis.set_ticks_position('bottom')
    aspect = (ymax-ymin)/(xmax-xmin)*(ax.get_xlim()[1] - ax.get_xlim()[0]) / (ax.get_ylim()[1] - ax.get_ylim()[0])
    ax.set_aspect(aspect)

    if nnn==0:
        # displacement
        fnameF='fig_dis.png'
        ls1='disx_max={0:15.7e}'.format(np.max(disx))
        ls2='disx_min={0:15.7e}'.format(np.min(disx))
        ls3='disy_max={0:15.7e}'.format(np.max(disy))
        ls4='disy_min={0:15.7e}'.format(np.min(disy))
        dx=x+disx/dmax*scl_dis
        dy=y+disy/dmax*scl_dis
        for ne in range(0,nele):
            n1=node[0,ne]-1
            n2=node[1,ne]-1
            ax.plot([x[n1],x[n2]],[y[n1],y[n2]],color='gray',linewidth=0.5)
            ax.plot([dx[n1],dx[n2]],[dy[n1],dy[n2]],color='black',linewidth=1)
    if nnn==1:
        # axial force diagram
        fnameF='fig_axi.png'
        ls1='N_max={0:15.7e}'.format(np.max([np.max(N1),np.max(N2)]))
        ls2='N_min={0:15.7e}'.format(np.min([np.min(N1),np.min(N2)]))
        ls3=''
        ls4=''
        d1=N1/nmax*scl_axi
        d2=N2/nmax*scl_axi
        for ne in range(0,nele):
            x1,x2,x3,x4,y1,y2,y3,y4=calc(ne,node,x,y,d1,d2)
            if d1[ne]<=0.0: # compression
                ax.fill([x1,x2,x3,x4],[y1,y2,y3,y4],color='black',alpha=0.1)
            else: # tension
                ax.fill([x1,x2,x3,x4],[y1,y2,y3,y4],color='black',alpha=0.2)
        for ne in range(0,nele):
            n1=node[0,ne]-1
            n2=node[1,ne]-1
            plt.plot([x[n1],x[n2]],[y[n1],y[n2]],color='black',linewidth=0.5)
    if nnn==2:
        # shearing force
        fnameF='fig_she.png'
        ls1='S_max={0:15.7e}'.format(np.max([np.max(-S1),np.max(-S2)]))
        ls2='S_min={0:15.7e}'.format(np.min([np.min(-S1),np.min(-S2)]))
        ls3=''
        ls4=''
        d1=S1/smax*scl_she
        d2=S2/smax*scl_she
        for ne in range(0,nele):
            x1,x2,x3,x4,y1,y2,y3,y4=calc(ne,node,x,y,d1,d2)
            ax.fill([x1,x2,x3,x4],[y1,y2,y3,y4],color='black',alpha=0.1)
        for ne in range(0,nele):
            n1=node[0,ne]-1
            n2=node[1,ne]-1
            ax.plot([x[n1],x[n2]],[y[n1],y[n2]],color='black',linewidth=0.5)
    if nnn==3:
        # moment
        fnameF='fig_mom.png'
        ls1='M_max={0:15.7e}'.format(np.max([np.max(-M1),np.max(-M2)]))
        ls2='M_min={0:15.7e}'.format(np.min([np.min(-M1),np.min(-M2)]))
        ls3=''
        ls4=''
        d1=M1/mmax*scl_mom
        d2=M2/mmax*scl_mom
        for ne in range(0,nele):
            x1,x2,x3,x4,y1,y2,y3,y4=calc(ne,node,x,y,d1,d2)
            ax.fill([x1,x2,x3,x4],[y1,y2,y3,y4],color='black',alpha=0.1)
        for ne in range(0,nele):
            n1=node[0,ne]-1
            n2=node[1,ne]-1
            ax.plot([x[n1],x[n2]],[y[n1],y[n2]],color='black',linewidth=0.5)

    ax.plot(xmin,ymin,'.',label=ls1)
    ax.plot(xmin,ymin,'.',label=ls2)
    ax.plot(xmin,ymin,'.',label=ls3)
    ax.plot(xmin,ymin,'.',label=ls4)
    ax.legend(loc='upper right',numpoints=1,markerscale=0, frameon=False,prop={'family':'monospace','size':12})
    plt.savefig(fnameF, bbox_inches="tight", pad_inches=0.2)
    plt.clf()

that's all

Recommended Posts

Planar skeleton analysis with Python (4) Handling of forced displacement
Planar skeleton analysis with Python
3D skeleton structure analysis with Python
Planar skeleton analysis in Python (2) Hotfix
Plane skeleton analysis with Python (3) Creation of section force diagram
Static analysis of Python code with GitLab CI
Two-dimensional elastic skeleton geometric nonlinear analysis with Python
Data analysis with python 2
Handling yaml with python
Voice analysis with python
Voice analysis with python
Data analysis with Python
[OpenCV / Python] I tried image analysis of cells with OpenCV
Calculate the regression coefficient of simple regression analysis with python
Challenge principal component analysis of text data with Python
[Python] Morphological analysis with MeCab
[Co-occurrence analysis] Easy co-occurrence analysis with Python! [Python]
Sentiment analysis with Python (word2vec)
Static analysis of Python programs
python> Handling of 2D arrays
Handling of python on mac
Japanese morphological analysis with Python
Muscle jerk analysis with Python
Perform isocurrent analysis of open channels with Python and matplotlib
Notes on handling large amounts of data with python + pandas
Handling of sparse tree-structured attributes (Python)
Impedance analysis (EIS) with python [impedance.py]
Practical exercise of data analysis with Python ~ 2016 New Coder Survey Edition ~
Handling of JSON files in Python
Text mining with Python ① Morphological analysis
Getting Started with Python Basics of Python
Life game with Python! (Conway's Game of Life)
10 functions of "language with battery" python
Image processing with Python 100 knocks # 4 Binarization of Otsu (discriminant analysis method)
From the introduction of JUMAN ++ to morphological analysis of Japanese with Python
Implementation of Dijkstra's algorithm with python
Data analysis starting with python (data visualization 1)
Logistic regression analysis Self-made with python
Coexistence of Python2 and 3 with CircleCI (1.0)
Handling regular expressions with PHP / Python
Data analysis starting with python (data visualization 2)
Data handling 2 Analysis of various data formats
Basic study of OpenCV with Python
Immediate display, forced display, flash of print output result with python (mainly jupyter)
You can do it with Python! Structural analysis of two-dimensional colloidal crystals
Basics of binarized image processing with Python
[Examples of improving Python] Learning Python with Codecademy
[In-Database Python Analysis Tutorial with SQL Server 2017]
Marketing analysis with Python ① Customer analysis (decyl analysis, RFM analysis)
Two-dimensional saturated-unsaturated osmotic flow analysis with Python
Execute Python script with cron of TS-220
Machine learning with python (2) Simple regression analysis
Check the existence of the file with python
Algorithm learned with Python 8th: Evaluation of algorithm
2D FEM stress analysis program with Python
Easy introduction of speech recognition with Python
Sentiment analysis of tweets with deep learning
Tweet analysis with Python, Mecab and CaboCha
UnicodeEncodeError struggle with standard output of python3
1. Statistics learned with Python 1-3. Calculation of various statistics (statistics)
Principal component analysis with Power BI + Python