#The default is ascending
newdf = df.sort_values(["column1","column2"])
#Ascending to descend=Add False
newdf = df.sort_values(["column1","column2"], ascending = [True, False])
#Case where missing value is filled with 0
newdf = df.fillna(0)
#Aggregation method for each column of missing values
df.isnull().sum()
#Extract only missing row
df[df.isnull() == True]
Recommended Posts