[Français] scikit-learn 0.18 Guide de l'utilisateur 4.8. Convertir la cible de prédiction (y)

Google a traduit http://scikit-learn.org/0.18/modules/preprocessing_targets.html. [scikit-learn 0.18 User Guide 4. Dataset Conversion](http://qiita.com/nazoking@github/items/267f2371757516f8c168#4-%E3%83%87%E3%83%BC%E3%82%BF % E3% 82% BB% E3% 83% 83% E3% 83% 88% E5% A4% 89% E6% 8F% 9B)


4.8. Convertir la cible de prédiction (y)

4.8.1. Binarisation des étiquettes

LabelBinarizer est utilisé pour créer une matrice d'indicateur d'étiquette à partir d'une liste d'étiquettes multiclasses. Une classe utilitaire utile:

>>> from sklearn import preprocessing
>>> lb = preprocessing.LabelBinarizer()
>>> lb.fit([1, 2, 6, 4, 2])
LabelBinarizer(neg_label=0, pos_label=1, sparse_output=False)
>>> lb.classes_
array([1, 2, 4, 6])
>>> lb.transform([1, 6])
array([[1, 0, 0, 0],
       [0, 0, 0, 1]])

Si vous souhaitez utiliser plusieurs étiquettes par instance, utilisez MultiLabelBinarizer (http://scikit-learn.org/0.18/modules/generated/sklearn.preprocessing.MultiLabelBinarizer.html#sklearn.preprocessing.MultiLabelBinarizer) ..

>>> lb = preprocessing.MultiLabelBinarizer()
>>> lb.fit_transform([(1, 2), (3,)])
array([[1, 1, 0],
       [0, 0, 1]])
>>> lb.classes_
array([1, 2, 3])

4.8.2. Codage des étiquettes

LabelEncoder ne doit désormais contenir que des valeurs comprises entre 0 et n_classes-1 Classe utilitaire pour la normalisation des étiquettes. Ceci est parfois utile pour écrire des routines Cython efficaces. LabelEncoder peut être utilisé comme suit:

>>> from sklearn import preprocessing
>>> le = preprocessing.LabelEncoder()
>>> le.fit([1, 2, 2, 6])
LabelEncoder()
>>> le.classes_
array([1, 2, 6])
>>> le.transform([1, 1, 2, 6])
array([0, 0, 1, 2])
>>> le.inverse_transform([0, 0, 1, 2])
array([1, 1, 2, 6])

Il peut également être utilisé pour convertir des étiquettes non numériques en étiquettes numériques (si hachables et comparables).

>>> le = preprocessing.LabelEncoder()
>>> le.fit(["paris", "paris", "tokyo", "amsterdam"])
LabelEncoder()
>>> list(le.classes_)
['amsterdam', 'paris', 'tokyo']
>>> le.transform(["tokyo", "tokyo", "paris"])
array([2, 2, 1])
>>> list(le.inverse_transform([2, 2, 1]))
['tokyo', 'tokyo', 'paris']

[scikit-learn 0.18 User Guide 4. Dataset Conversion](http://qiita.com/nazoking@github/items/267f2371757516f8c168#4-%E3%83%87%E3%83%BC%E3%82%BF % E3% 82% BB% E3% 83% 83% E3% 83% 88% E5% A4% 89% E6% 8F% 9B)

© 2010 --2016, développeurs scikit-learn (licence BSD).

Recommended Posts

[Français] scikit-learn 0.18 Guide de l'utilisateur 4.8. Convertir la cible de prédiction (y)
[Français] scikit-learn 0.18 Guide de l'utilisateur 3.3. Évaluation du modèle: quantifier la qualité de la prédiction
[Français] scikit-learn 0.18 Guide de l'utilisateur 3.2. Réglage des hyper paramètres de l'estimateur
[Français] scikit-learn 0.18 Guide de l'utilisateur 4.5. Projection aléatoire
[Français] scikit-learn 0.18 Guide de l'utilisateur 1.11. Méthode Ensemble
[Français] scikit-learn 0.18 Guide de l'utilisateur 4.2 Extraction de fonctionnalités
[Français] scikit-learn 0.18 Guide de l'utilisateur 1.16. Étalonnage des probabilités
[Français] scikit-learn 0.18 Guide de l'utilisateur 1.13 Sélection des fonctionnalités
[Français] scikit-learn 0.18 Guide de l'utilisateur 3.4. Persistance du modèle
[Français] scikit-learn 0.18 Guide de l'utilisateur 2.8. Estimation de la densité
[Français] scikit-learn 0.18 Guide de l'utilisateur 4.3. Prétraitement des données
[Français] scikit-learn 0.18 Guide de l'utilisateur 3.1. Validation croisée: évaluer les performances de l'estimateur
[Français] scikit-learn 0.18 Guide de l'utilisateur 4.4. Réduction de dimension non supervisée
[Français] scikit-learn 0.18 Guide de l'utilisateur Table des matières
[Français] scikit-learn 0.18 Guide de l'utilisateur 1.4. Support Vector Machine
[Français] scikit-learn 0.18 Guide de l'utilisateur 3.5. Courbe de vérification: tracez le score pour évaluer le modèle
[Français] scikit-learn 0.18 Guide de l'utilisateur 2.5. Décomposer les signaux en composants (problème de décomposition de la matrice)
[Français] scikit-learn 0.18 Guide de l'utilisateur 2.7. Détection des nouveautés et des valeurs aberrantes
[Français] scikit-learn 0.18 Guide de l'utilisateur 4.1. Union des pipelines et des fonctionnalités: combinaison d'estimateurs
[Français] Tutoriel scikit-learn 0.18 Choisir le bon modèle