4 [/] Quatre arithmétiques par apprentissage automatique

english_la/b.png

J'ai pensé au perceptron de la division sous forme d'apprentissage profond. I considered a division perceptron in the form of deep learning.

# coding=utf-8
import numpy as np
import matplotlib.pyplot as plt

#Initial value
#number of learning
N = 1000
#layer
layer = [2, 2, 1]
#bias
#bias = [0.0, 0.0]
#learning rate
η = [0.001, 0.001]
#η = [0.000001, 0.000001]
#number of middle layers
H = len(η) - 1
#teacher value
t = [None for _ in range(N)]
#function output value
f_out = [[None for _ in range(H + 1)] for _ in range(N)]
#function input value
f_in = [[None for _ in range(H + 1)] for _ in range(N)]
#weight
w = [[None for _ in range(H + 1)] for _ in range(N + 1)]
for h in range(H + 1):   
    w[0][h] = np.random.uniform(-1.0, 1.0, (layer[h + 1], layer[h]))

for h in range(H + 1):
    print(w[0][h])
    
#squared error
dE = [None for _ in range(N)]
#∂E/∂IN
δ = [[None for _ in range(H + 1)] for _ in range(N)]

#Learning
for n in range(N):

    #input value
    f_out[n][0] = np.random.uniform(-10.0, 10.0, (layer[0]))
    
    #teacher value
    t[n] = f_out[n][0][0] / f_out[n][0][1]
    
    #order propagation
    f_in[n][0] = np.dot(w[n][0], f_out[n][0])
    f_out[n][1] = np.log(f_in[n][0]*f_in[n][0])
    f_in[n][1] = np.dot(w[n][1], f_out[n][1])

    #output value
    div = np.exp(f_in[n][1])

    #squared error
    dE[n] = div - t[n]#value after squared error differentiation due to omission of calculation

    #δ
    δ[n][1] = div * dE[n]
    δ[n][0] = (2.0 / f_in[n][0]) * np.dot(w[n][1].T, δ[n][1])
    
    #back propagation
    for h in range(H + 1):
        w[n + 1][h] = w[n][h] - η[h] * np.real(δ[n][h].reshape(len(δ[n][h]), 1) * f_out[n][h])
        

#Output
#Weight
for h in range(H + 1):
    print(w[N][h])
#figure
#area height
py = np.amax(layer)
#area width
px = (H + 1) * 2
#area size
plt.figure(figsize = (16, 9))
#horizontal axis
x = np.arange(0, N + 1, 1)
#drawing
for h in range(H + 1):
    for l in range(layer[h + 1]):
        #area matrix
        plt.subplot(py, px, px * l + h * 2 + 1)
        for m in range(layer[h]):                       
            #line
            plt.plot(x, np.array([w[n][h][l, m] for n in range(N + 1)]), label = "w[" + str(h) + "][" + str(l) + "," + str(m) + "]")        
        #grid line
        plt.grid(True)
        #legend
        plt.legend(bbox_to_anchor = (1, 1), loc = 'upper left', borderaxespad = 0, fontsize = 10)

#save
plt.savefig('graph_div.png') 
#show
plt.show()

Montre le concept de poids.\\
I\ indicate\ the\ concept\ of\ weight.\\
w[0]=
\begin{pmatrix}
△ & □\\
▲ & ■
\end{pmatrix},
w[1]=
\begin{pmatrix}
〇 & ●
\end{pmatrix}\\
 \\
Valeur d'entrée et w[0]Produit de\\
multiplication\ of\ input\ value\ and\ w[0]\\
\begin{pmatrix}
△ & □\\
▲ & ■
\end{pmatrix}
\begin{pmatrix}
a\\
b
\end{pmatrix}\\
=
\begin{pmatrix}
△a+□b\\
▲a+■b
\end{pmatrix}\\
 \\
Entrée 1ère couche\\
enter\ in\ the\ first\ layer\\
\begin{pmatrix}
log(△a+□b)^2\\
log(▲a+■b)^2
\end{pmatrix}\\
 \\
Le vrai nombre est au carré pour correspondre au nombre négatif.\\
The\ exact\ number\ is\ squared\ to\ accommodate\ negative\ numbers.\\
 \\
Sortie 1ère couche et w[1]Produit de\\
product\ of\ first\ layer\ output\ and\ w[1]\\
\begin{align}
\begin{pmatrix}
〇 & ●
\end{pmatrix}
\begin{pmatrix}
log(△a+□b)^2\\
log(▲a+■b)^2
\end{pmatrix}
=&〇log(△a+□b)^2+●log(▲a+■b)^2\\
=&log(△a+□b)^{2〇}-log(▲a+■b)^{-2●}\\
=&log\frac{(△a+□b)^{2〇}}{(▲a+■b)^{-2●}}\\
\end{align}\\
 \\
Entrée de la couche de sortie\\
enter\ in\ the\ output\ layer\\
e^{log\frac{(△a+□b)^{2〇}}{(▲a+■b)^{-2●}}}=\frac{(△a+□b)^{2〇}}{(▲a+■b)^{-2●}}\\
 \\
\left\{
\begin{array}{l}
△=1,□=0,〇=0.5 \\
▲=0,■=1,●=-0.5
\end{array}
\right.\\
 \\
\frac{a}{b}\\
 \\
Dans le cas le plus simple, si les conditions ci-dessus sont remplies, le quotient a/Vous pouvez sortir b.\\
In\ the\ simplest\ case,\ if\ the\ above\ conditions\ are\ met,\ quotient\ a/b\ can\ be\ output.\\


La valeur initiale est aléatoire(-1.0~1.0)Après avoir décidé, j'ai essayé de voir si cela convergerait vers la valeur cible si l'apprentissage était répété.\\
After\ deciding\ the\ initial\ value\ between\ random\ numbers\ (-1.0~1.0),\\
I\ tried\ to\ repeat\ the\ learning\ to\ converge\ to\ the\ target\ value.\\
 \\
Valeur cible\\
Target\ value\\
w[0]=
\begin{pmatrix}
△ & □\\
▲ & ■
\end{pmatrix}
,w[1]=
\begin{pmatrix}
○ & ●
\end{pmatrix}\\
\left\{
\begin{array}{l}
△=1,□=0,〇=0.5 \\
▲=0,■=1,●=-0.5
\end{array}
\right.\\
 \\
valeur initiale\\
Initial\ value\\
w[0]=
\begin{pmatrix}
-0.18845444 & -0.56031414\\
-0.48188658 & 0.6470921
\end{pmatrix}
,w[1]=
\begin{pmatrix}
0.80395641 & 0.80365676
\end{pmatrix}\\
\left\{
\begin{array}{l}
△=-0.18845444,□=-0.56031414,〇=0.80395641 \\
▲=-0.48188658,■=0.6470921,●=0.80365676
\end{array}
\right.\\
 \\
Valeur calculée\\
Calculated\ value\\
w[0]=
\begin{pmatrix}
14601870.60282903 & -14866110.02378938\\
13556781.27758209 & -13802110.45958244
\end{pmatrix}
,w[1]=
\begin{pmatrix}
-1522732.53915774 & -6080851.59710287
\end{pmatrix}\\
\left\{
\begin{array}{l}
△=14601870.60282903,□=-14866110.02378938,〇=-1522732.53915774 \\
▲=13556781.27758209,■=-13802110.45958244,●=-6080851.59710287
\end{array}
\right.\\

graph_div.png


C'est un échec. Peu importe combien de fois vous le faites, le poids divergera à une valeur ridicule.\\
J'ai cherché la cause.\\
It\ is\ a\ failure.\\
No\ matter\ how\ many\ times\ I\ do,\ the\ weights\ will\ diverge\ to\ ridiculous\ values.\\
I\ investigated\ the\ cause.\\
 \\
Avec la règle de la chaîne de propagation des erreurs\\
In\ chain\ rule\ of\ the\ backpropagation\\
(log(x^2))'=\frac{2}{x}\\
\lim_{x \to ±∞} \frac{2}{x}=0\\
 \\
(e^x)'=e^x\\
\lim_{x \to -∞} e^x=0\\
Il s'est avéré que prendre une valeur extrêmement grande comme celle-ci fait disparaître le dégradé.\\
It\ was\ found\ that\ such\ an\ extremely\ large\ value\ would\ cause\ the\ gradient\ to\ disappear.\\
 \\
J'ai reconsidéré.\\
I reconsidered.

商ver2.png

# coding=utf-8
import numpy as np
import matplotlib.pyplot as plt

#Initial value
#number of learning
N = 200000
#layer
layer = [2, 2, 1]
#bias
#bias = [0.0, 0.0]
#learning rate
η = [0.1, 0.1]
#η = [0.000001, 0.000001]
#clip value
#clip = 709
clip = 700
#number of middle layers
H = len(η) - 1
#teacher value
t = [None for _ in range(N)]
#function output value
f_out = [[None for _ in range(H + 1)] for _ in range(N)]
#function input value
f_in = [[None for _ in range(H + 1)] for _ in range(N)]
#weight
w = [[None for _ in range(H + 1)] for _ in range(N + 1)]
for h in range(H):   
    w[0][h] = np.random.uniform(-1.0, 1.0, (layer[h + 1], layer[h]))
w[0][H] = np.zeros((layer[H + 1], layer[H]))

for h in range(H + 1):
    print(w[0][h])
    
#squared error
dE = [None for _ in range(N)]
#∂E/∂IN
δ = [[None for _ in range(H + 1)] for _ in range(N)]

#Learning
for n in range(N):

    #input value
    t[n] = clip
    while np.abs(t[n]) > np.log(np.log(clip)):#Gradient vanishing problem Measure
        f_out[n][0] = np.random.uniform(0.0, 10.0, (layer[0]))
        f_out[n][0] = np.array(f_out[n][0], dtype=np.complex)
    
        #teacher value
        t[n] = f_out[n][0][0] / f_out[n][0][1]
    
    #order propagation
    f_in[n][0] = np.dot(w[n][0], f_out[n][0])    
    f_out[n][1] = np.log(f_in[n][0])    
    f_in[n][1] = np.dot(w[n][1], f_out[n][1])
    
    #output value
    div = np.exp(f_in[n][1])
    
    #squared error
    dE[n] = np.real(div - t[n])#value after squared error differentiation due to omission of calculation
    dE[n] = np.clip(dE[n], -clip, clip)
    dE[n] = np.nan_to_num(dE[n])

    #δ
    δ[n][1] = np.real(div * dE[n])
    δ[n][1] = np.clip(δ[n][1], -clip, clip)
    δ[n][1] = np.nan_to_num(δ[n][1])
    
    
    δ[n][0] = np.real((1.0 / f_in[n][0]) * np.dot(w[n][1].T, δ[n][1]))
    δ[n][0] = np.clip(δ[n][0], -clip, clip)  
    δ[n][0] = np.nan_to_num(δ[n][0]) 
    
    #back propagation
    for h in range(H + 1):
        #Gradient vanishing problem Measure
        # a*10^b a part only
        w10_u = np.real(δ[n][h].reshape(len(δ[n][h]), 1) * f_out[n][h])
        w10_u = np.clip(w10_u, -clip, clip)  
        w10_u = np.nan_to_num(w10_u)        
        w10_d = np.where(
            w10_u != 0.0,
            np.modf(np.log10(np.abs(w10_u)))[1],
            0.0
        )
        #Decimal not supported
        w10_d = np.clip(w10_d, 0.0, clip)
        
        w[n + 1][h] = w[n][h] - η[h] * (w10_u / np.power(10.0, w10_d))

#Output
#Weight
for h in range(H + 1):
    print(w[N][h])
#figure
#area height
py = np.amax(layer)
#area width
px = (H + 1) * 2
#area size
plt.figure(figsize = (16, 9))
#horizontal axis
x = np.arange(0, N + 1, 1) #0 à N+Jusqu'à 1 incréments sur 1
#drawing
for h in range(H + 1):
    for l in range(layer[h + 1]):
        #area matrix
        plt.subplot(py, px, px * l + h * 2 + 1)
        for m in range(layer[h]):                       
            #line
            plt.plot(x, np.array([w[n][h][l, m] for n in range(N + 1)]), label = "w[" + str(h) + "][" + str(l) + "," + str(m) + "]")        
        #grid line
        plt.grid(True)
        #legend
        plt.legend(bbox_to_anchor = (1, 1), loc = 'upper left', borderaxespad = 0, fontsize = 10)

#save
plt.savefig('graph_div.png') 
#show
plt.show()

Comme contre-mesure -Définissez la valeur d'entrée sur un nombre complexe. -Seules les données qui ne débordent pas facilement avec la valeur de l'enseignant. ・ Ne définissez pas δ sur une valeur supérieure à une certaine valeur. ・ Réglez le gradient uniquement sur la partie a de a * 10 ^ b afin que le poids ne diverge pas. (Uniquement lorsque b est un nombre positif) As a countermeasure ・ Modifiez la valeur d'entrée en un nombre complexe. ・ N'utilisez que des données difficiles à dépasser par rapport à la valeur de l'enseignant. ・ Ne rendez pas δ supérieur à une certaine valeur. ・ Réglez le gradient sur seulement une partie de a * 10 ^ b afin que le poids ne diverge pas (uniquement lorsque b est un nombre positif)

graph_div.png


Valeur cible\\
Target\ value\\
w[0]=
\begin{pmatrix}
△ & □\\
▲ & ■
\end{pmatrix}
,w[1]=
\begin{pmatrix}
○ & ●
\end{pmatrix}\\
\left\{
\begin{array}{l}
△=1,□=0,〇=1 \\
▲=0,■=1,●=-1
\end{array}
\right.\\
 \\
valeur initiale\\
Initial value\\
w[0]=
\begin{pmatrix}
-0.12716087 & 0.34977234\\
0.85436489 & 0.65970844
\end{pmatrix}
,w[1]=
\begin{pmatrix}
0.0 & 0.0
\end{pmatrix}\\
\left\{
\begin{array}{l}
△=-0.12716087,□=0.34977234,〇=0.0 \\
▲=0.85436489,■=0.65970844,●=0.0
\end{array}
\right.\\
 \\
Valeur calculée\\
Calculated\ value\\
w[0]=
\begin{pmatrix}
-1.71228449e-08 & 1.00525062e+00\\
1.00525061e+00 & -4.72288257e-09
\end{pmatrix}
,w[1]=
\begin{pmatrix}
-0.99999998 & 0.99999998
\end{pmatrix}\\
\left\{
\begin{array}{l}
△=-1.71228449e-08,□=1.00525062e+00,〇=-0.99999998\\
▲=1.00525061e+00,■=-4.72288257e-09,●=0.99999998
\end{array}
\right.\\
 \\
Réussi. Les valeurs de △ □ et ▲ ■ sont inversées.\\
Je n'aime pas ça d'une manière qui a la bonne réponse et qui s'en rapproche.\\
Même ainsi, connectez-vous tout au plus en essayant d'enseigner la division,exp,Avec des nombres complexes\\
J'avais des ennuis parce que je devais m'étendre aux mathématiques au lycée.\\
 \\
Succeeded.\ The\ values\ of\ △□\ and\ ▲■\ are\ reversed.\\
I\ don't\ like\ it\ in\ the\ way\ that\ I\ get\ it\ right.\\
Even\ so,\ at\ the\ very\ least\ trying\ to\ teach\ division\\
log,\ exp,\ complex\ numbers\\
I\ had\ trouble\ expanding\ to\ high\ school\ mathematics.\\

Recommended Posts

4 [/] Quatre arithmétiques par apprentissage automatique
Apprentissage automatique
Résumé de l'apprentissage automatique par les débutants de Python
Faire le contrôle d'un homme sandwich par l'apprentissage automatique ver4
[Échec] Trouvez Maki Horikita par apprentissage automatique
[Memo] Apprentissage automatique
Mémo d'étude Python & Machine Learning ④: Machine Learning par rétro-propagation
Exemple d'apprentissage automatique
Classification des images de guitare par apprentissage automatique Partie 1
Classer les informations liées à l'apprentissage automatique par modèle de sujet
Analyse de l'utilisation de l'espace partagé par l'apprentissage automatique
[Français] scikit-learn 0.18 Introduction de l'apprentissage automatique par le didacticiel scikit-learn
Estimation raisonnable du prix de Mercari par apprentissage automatique
Classification des images de guitare par apprentissage automatique, partie 2
Histoire de l'analyse de données par apprentissage automatique
Résumé du didacticiel d'apprentissage automatique
Apprentissage automatique ⑤ Résumé AdaBoost
Apprentissage automatique: supervisé - AdaBoost
Machine de vecteur de support d'apprentissage automatique
Machine Sommelier par Keras-
Étudier l'apprentissage automatique ~ matplotlib ~
Régression linéaire d'apprentissage automatique
Mémo du cours d'apprentissage automatique
Bibliothèque d'apprentissage automatique dlib
Apprentissage automatique (TensorFlow) + Lotto 6
Apprenez en quelque sorte le machine learning
Bibliothèque d'apprentissage automatique Shogun
Défi de lapin d'apprentissage automatique
Introduction à l'apprentissage automatique
Apprentissage automatique: k-voisins les plus proches
Qu'est-ce que l'apprentissage automatique?
Mémo d'apprentissage Python pour l'apprentissage automatique par Chainer du chapitre 2
Mémo d'apprentissage Python pour l'apprentissage automatique par Chainer chapitres 1 et 2
Modèle d'apprentissage automatique prenant en compte la maintenabilité
Prétraitement japonais pour l'apprentissage automatique
Apprentissage automatique dans Delemas (s'entraîner)
Quatre règles de python
Une introduction à l'apprentissage automatique
Techniques liées à l'apprentissage automatique / à la classification
Machine Learning: Supervision - Régression linéaire
Bases de l'apprentissage automatique (mémoire)
Un débutant en apprentissage automatique a essayé la RBM
Prédire la présence ou l'absence d'infidélité par l'apprentissage automatique
[Renforcer l'apprentissage] Suivi par multi-agents
[Apprentissage automatique] Comprendre la forêt aléatoire
Apprentissage automatique avec Python! Préparation
Apprentissage automatique ② Résumé Naive Bayes
Comprendre l'apprentissage automatique ~ régression de crête ~.
À propos de la matrice mixte d'apprentissage automatique
Apprentissage automatique: forêt supervisée - aléatoire
Mémo d'apprentissage Python pour l'apprentissage automatique par Chainer Chapitre 7 Analyse de régression
Mémo pratique du système d'apprentissage automatique
Démineur d'apprentissage automatique avec PyTorch
Créer un environnement d'apprentissage automatique
Programmation Python Machine Learning> Mots-clés
Algorithme d'apprentissage automatique (perceptron simple)
Discriminer les chansons t + pazolite par apprentissage automatique (développement du défi NNC)
Utilisé en EDA pour l'apprentissage automatique
Importance des ensembles de données d'apprentissage automatique