[Introduction to pytorch-lightning] First Lit ♬

I wrote pytorch article just a year ago. It was relatively easy to move, so I thought it would be easy this time as well, so I was in a hurry. I feel that the introduction page is a little. However, once I understood it, I realized that the animation in Reference ① was rather excellent. So, do you want to explain this?

【reference】 ①PyTorchLightning/pytorch-lightningSTEP-BY-STEP WALK-THROUGH The environment this time is as follows.

>python -m pip install pytorch-lightning
...
Successfully installed fsspec-0.8.5 pytorch-lightning-1.1.2 tensorboard-2.4.0 tensorboard-plugin-wit-1.7.0 tqdm-4.55.0

>python -m pip install tensorboard
Requirement already satisfied:...
>>> import tensorboard
>>> tensorboard.__version__
'2.4.0'

>python
Python 3.7.5 (default, Oct 31 2019, 15:18:51) [MSC v.1916 64 bit (AMD64)] :: Anaconda, Inc. on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> import pytorch_lightning
>>> pytorch_lightning.__version__
'1.1.2'
>>> import torch
>>> torch.__version__
'1.7.1'

What i did

・ The liver of pytorch-lightning ・ Looking back on Pytorch ・ Pytorch-lightning

・ The liver of pytorch-lightning

Lightning Philosophy Lightning structures your deep learning code in 4 parts: ・ Research code ・ Engineering code ・ Non-essential code ・ Data code You rearranged these from the pytorch code and aggregated them into a Class. That is Animation above.

So, just analyze the code written in Pytorch as above and put it in the following frame and it will work.

pytorch-lightning template

import torch
from torch.nn import functional as F
from torch import nn
from pytorch_lightning.core.lightning import LightningModule
from pytorch_lightning import Trainer
import pytorch_lightning as pl

from torch.utils.data import DataLoader, random_split
from torchvision.datasets import MNIST
import os
from torchvision import datasets, transforms

from torch.optim import Adam

class LitMNIST(LightningModule): #Lightning Module inheritance required

    def __init__(self, data_dir='./'): #Items that need to be initialized are listed here
        super().__init__()
        self.data_dir=data_dir
        self.transform=transforms.Compose([transforms.ToTensor(),
                              transforms.Normalize((0.1307,), (0.3081,))])

        # mnist images are (1, 28, 28) (channels, width, height)
        #Function for network definition; used in forward
        self.layer_1 = torch.nn.Linear(28 * 28, 128)
        self.layer_2 = torch.nn.Linear(128, 256)
        self.layer_3 = torch.nn.Linear(256, 10)
        
        self.train_acc = pl.metrics.Accuracy()
        self.val_acc = pl.metrics.Accuracy()
        self.test_acc = pl.metrics.Accuracy()

    def forward(self, x): #Make inferences
        batch_size, channels, width, height = x.size()
        # (b, 1, 28, 28) -> (b, 1*28*28)
        x = x.view(batch_size, -1)
        x = self.layer_1(x)
        x = F.relu(x)
        x = self.layer_2(x)
        x = F.relu(x)
        x = self.layer_3(x)
        x = F.log_softmax(x, dim=1)
        return x

    def training_step(self, batch, batch_idx): #training
        x, y = batch
        logits = self(x)
        loss = F.nll_loss(logits, y)
        self.log('my_loss', loss, on_step=True, on_epoch=True, prog_bar=True, logger=True)
        return loss

    def validation_step(self, batch, batch_idx): #Conducted to confirm generalization performance
        x, t = batch
        y = self(x)
        loss = F.nll_loss(y, t)
        preds = torch.argmax(y, dim=1)
        
        # Calling self.log will surface up scalars for you in TensorBoard
        #log record; self defined above.val_Record acc etc.
        self.log('val_loss', loss, prog_bar=True)
        self.log('val_acc', self.val_acc(y,t), prog_bar=True)
        return loss
    
    def test_step(self, batch, batch_idx): #Run test; final loss and acc confirmation
        # Here we just reuse the validation_step for testing
        return self.validation_step(batch, batch_idx)
    
    def configure_optimizers(self): #Define optimizer
        return Adam(self.parameters(), lr=1e-3)    
        
    def prepare_data(self): #Data download
        # download
        MNIST(self.data_dir, train=True, download=True)
        MNIST(self.data_dir, train=False, download=True)
    
    def setup(self, stage=None): #train, val,test data split
        # Assign train/val datasets for use in dataloaders
        mnist_full =MNIST(self.data_dir, train=True, transform=self.transform)
        n_train = int(len(mnist_full)*0.8)
        n_val = len(mnist_full)-n_train
        self.mnist_train, self.mnist_val = torch.utils.data.random_split(mnist_full, [n_train, n_val])
        self.mnist_test = MNIST(self.data_dir, train=False, transform=self.transform)
    
    def train_dataloader(self): #train data creation
        # prepare transforms standard to MNIST
        mnist_train = MNIST(self.data_dir, train=True, transform=self.transform)
        return DataLoader(mnist_train, batch_size=64)

    def val_dataloader(self): #val data creation
        mnist_val = MNIST(self.data_dir, train=False, transform=self.transform)
        return DataLoader(mnist_val, batch_size=64)

    def test_dataloader(self): #test data creation
        mnist_test = MNIST(self.data_dir, train=False, transform=self.transform)
        return DataLoader(mnist_test, batch_size=64)

#Device definition for Gpu usage
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
#Random number initial value fixed
pl.seed_everything(0)
#define net
net = LitMNIST()
#Put on GPU
model = net.to(device)
#Define the number of trainnigs, etc.
trainer = Trainer(gpus=1, max_epochs=10)
#Fit (learn)
trainer.fit(model)
#Verify with test data
results = trainer.test()
#Verification result output
print(results)
>python Lit_MNIST.py
GPU available: True, used: True
TPU available: None, using: 0 TPU cores
LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]
2020-12-28 19:01:18.414240: W tensorflow/stream_executor/platform/default/dso_loader.cc:60] Could not load dynamic library 'cudart64_110.dll'; dlerror: cudart64_110.dll not found
2020-12-28 19:01:18.414340: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.

  | Name      | Type     | Params
---------------------------------------
0 | layer_1   | Linear   | 100 K
1 | layer_2   | Linear   | 33.0 K
2 | layer_3   | Linear   | 2.6 K
3 | train_acc | Accuracy | 0
4 | val_acc   | Accuracy | 0
5 | test_acc  | Accuracy | 0
---------------------------------------
136 K     Trainable params
0         Non-trainable params
136 K     Total params
Epoch 9: 100%|████| 1095/1095 [00:12<00:00, 87.94it/s, loss=0.02, v_num=62, val_loss=0.105, val_acc=0.977, my_loss_step=0.000118, my_loss_epoch=0.0252]
Testing: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████| 157/157 [00:01<00:00, 107.82it/s]
--------------------------------------------------------------------------------
DATALOADER:0 TEST RESULTS
{'val_acc': tensor(0.9758, device='cuda:0'),
 'val_loss': tensor(0.0901, device='cuda:0')}
--------------------------------------------------------------------------------
[{'val_loss': 0.09011910110712051, 'val_acc': 0.9757999777793884}]

To check the log on the tensorboard, use the following command In the browser http://localhost:6006/ You can see it by looking at it.

>tensorboard --logdir ./lightning_logs
...
TensorBoard 2.4.0 at http://localhost:6006/ (Press CTRL+C to quit)

tensorboard.png

・ Looking back on Pytorch

When I finish here, it feels good, but I can't do what I was able to do with pytorch. -With the above code, the definition of network is complicated. ・ I want to control learning. Well I want to change the learning rate ・ With GAN, I want to support multiple optimizers So I solved it one by one.

-With the above code, the definition of network is complicated.

I will give the network in another class. ⇒I was able to It's cleaner than I expected, and it's convenient to use a large network. ⇒ It is easy to concentrate (separate and concentrate) on the Model, which is the original aim of pytorch-lightning.

    def __init__(self, data_dir='./'):
        super().__init__()
        ...
        self.net = VGG16()
        ...

    def forward(self, x):
        return self.net(x)

・ I want to control learning. Well I want to change the learning rate

This is, after all, the same part as the third, but it was related to the definition of optimizer. The reference is as shown in reference ③ below. Reference ④ is not directly related, but it is a summary of how to give the learning rate with pytorch. 【reference】 ③OPTIMIZATIONPyTorch Scheduler Summary

So, I rewrote it as follows.

    def configure_optimizers(self):
        optimizer = optim.Adam(self.parameters(),lr=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0, amsgrad=False)
        scheduler = {'scheduler': optim.lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.2)}
        print("CF;Ir = ", optimizer.param_groups[0]['lr'])
        return [optimizer], [scheduler]

I tried to output it below to see if it really changed. However, this code is executed step by step, so check it once and comment it out.

    def training_step(self, batch, batch_idx):
        x, t =batch
        y = self(x)
        loss = F.cross_entropy(y, t)
        print('Ir =',self.optimizers().param_groups[0]['lr'])
        return loss

Also, class MyPrintingCallback(Callback): I tried to output with, but I couldn't.

・ With GAN, I want to support multiple optimizers

I haven't actually done this yet, so I'll do my next homework. However, it is explained in the optimizer above, and it seems that it can be done as follows.

【reference】 ⑤Use multiple optimizers (like GANs) And when you want to set it complicatedly, you end up taking the following strategy. ⑥Manual optimization

Summary

・ I played with pytorch-lightning ・ Simple things look easy, but I felt that they were deep ・ It seems that it will take time to manipulate the code as you wish

・ Next time, I would like to learn GAN by making full use of multiple optimizers. By the way, I will attach the code and execution result in VGG16 as a bonus. Actually, I haven't read this code, but this time I only looked at the optimizer. PyTorchLightning/pytorch-lightning

bonus

>python torch_lightning_cifar10.py
cuda:0
----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
            Conv2d-1           [-1, 64, 32, 32]           1,792
       BatchNorm2d-2           [-1, 64, 32, 32]             128
              ReLU-3           [-1, 64, 32, 32]               0
            Conv2d-4           [-1, 64, 32, 32]          36,928
       BatchNorm2d-5           [-1, 64, 32, 32]             128
              ReLU-6           [-1, 64, 32, 32]               0
         MaxPool2d-7           [-1, 64, 16, 16]               0
            Conv2d-8          [-1, 128, 16, 16]          73,856
       BatchNorm2d-9          [-1, 128, 16, 16]             256
             ReLU-10          [-1, 128, 16, 16]               0
           Conv2d-11          [-1, 128, 16, 16]         147,584
      BatchNorm2d-12          [-1, 128, 16, 16]             256
             ReLU-13          [-1, 128, 16, 16]               0
        MaxPool2d-14            [-1, 128, 8, 8]               0
           Conv2d-15            [-1, 256, 8, 8]         295,168
      BatchNorm2d-16            [-1, 256, 8, 8]             512
             ReLU-17            [-1, 256, 8, 8]               0
           Conv2d-18            [-1, 256, 8, 8]         590,080
      BatchNorm2d-19            [-1, 256, 8, 8]             512
             ReLU-20            [-1, 256, 8, 8]               0
           Conv2d-21            [-1, 256, 8, 8]         590,080
      BatchNorm2d-22            [-1, 256, 8, 8]             512
             ReLU-23            [-1, 256, 8, 8]               0
        MaxPool2d-24            [-1, 256, 4, 4]               0
           Conv2d-25            [-1, 512, 4, 4]       1,180,160
      BatchNorm2d-26            [-1, 512, 4, 4]           1,024
             ReLU-27            [-1, 512, 4, 4]               0
           Conv2d-28            [-1, 512, 4, 4]       2,359,808
      BatchNorm2d-29            [-1, 512, 4, 4]           1,024
             ReLU-30            [-1, 512, 4, 4]               0
           Conv2d-31            [-1, 512, 4, 4]       2,359,808
      BatchNorm2d-32            [-1, 512, 4, 4]           1,024
             ReLU-33            [-1, 512, 4, 4]               0
        MaxPool2d-34            [-1, 512, 2, 2]               0
           Conv2d-35            [-1, 512, 2, 2]       2,359,808
      BatchNorm2d-36            [-1, 512, 2, 2]           1,024
             ReLU-37            [-1, 512, 2, 2]               0
           Conv2d-38            [-1, 512, 2, 2]       2,359,808
      BatchNorm2d-39            [-1, 512, 2, 2]           1,024
             ReLU-40            [-1, 512, 2, 2]               0
           Conv2d-41            [-1, 512, 2, 2]       2,359,808
      BatchNorm2d-42            [-1, 512, 2, 2]           1,024
             ReLU-43            [-1, 512, 2, 2]               0
        MaxPool2d-44            [-1, 512, 1, 1]               0
           Linear-45                  [-1, 512]         262,656
             ReLU-46                  [-1, 512]               0
           Linear-47                   [-1, 32]          16,416
             ReLU-48                   [-1, 32]               0
           Linear-49                   [-1, 10]             330
            VGG16-50                   [-1, 10]               0
================================================================
Total params: 15,002,538
Trainable params: 15,002,538
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.01
Forward/backward pass size (MB): 6.57
Params size (MB): 57.23
Estimated Total Size (MB): 63.82
----------------------------------------------------------------
Starting to init trainer!
GPU available: True, used: True
TPU available: None, using: 0 TPU cores
LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]
Trainer is init now
Files already downloaded and verified
Files already downloaded and verified
CF;Ir =  0.001
2020-12-28 20:36:51.786876: W tensorflow/stream_executor/platform/default/dso_loader.cc:60] Could not load dynamic library 'cudart64_110.dll'; dlerror: cudart64_110.dll not found
2020-12-28 20:36:51.787050: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.

  | Name      | Type     | Params
---------------------------------------
0 | net       | VGG16    | 15.0 M
1 | train_acc | Accuracy | 0
2 | val_acc   | Accuracy | 0
3 | test_acc  | Accuracy | 0
---------------------------------------
15.0 M    Trainable params
0         Non-trainable params
15.0 M    Total params
                                             dog   cat  deer plane


Epoch 0: 100%|██████████████████████████████████████████████████| 1563/1563 [01:08<00:00, 22.89it/s, loss=1.63, v_num=63, val_loss=1.58, val_acc=0.344]
Epoch 1: 100%|██████████████████████████████████████████████████| 1563/1563 [01:08<00:00, 22.72it/s, loss=1.41, v_num=63, val_loss=1.33, val_acc=0.481]
Epoch 2: 100%|███████████████████████████████████████████████████| 1563/1563 [01:08<00:00, 22.66it/s, loss=1.17, v_num=63, val_loss=1.07, val_acc=0.62]
Epoch 3: 100%|████████████████████████████████████████████████| 1563/1563 [01:09<00:00, 22.61it/s, loss=0.994, v_num=63, val_loss=0.922, val_acc=0.684]
Epoch 4: 100%|████████████████████████████████████████████████| 1563/1563 [01:09<00:00, 22.62it/s, loss=0.833, v_num=63, val_loss=0.839, val_acc=0.713]
Epoch 5: 100%|████████████████████████████████████████████████| 1563/1563 [01:09<00:00, 22.40it/s, loss=0.601, v_num=63, val_loss=0.649, val_acc=0.775]
Epoch 6: 100%|█████████████████████████████████████████████████| 1563/1563 [01:10<00:00, 22.14it/s, loss=0.569, v_num=63, val_loss=0.62, val_acc=0.788]
Epoch 7: 100%|██████████████████████████████████████████████████| 1563/1563 [01:09<00:00, 22.58it/s, loss=0.519, v_num=63, val_loss=0.595, val_acc=0.8]
Epoch 8: 100%|████████████████████████████████████████████████| 1563/1563 [01:09<00:00, 22.57it/s, loss=0.435, v_num=63, val_loss=0.599, val_acc=0.803]
Epoch 9: 100%|█████████████████████████████████████████████████| 1563/1563 [01:09<00:00, 22.57it/s, loss=0.43, v_num=63, val_loss=0.579, val_acc=0.809]
Epoch 10: 100%|████████████████████████████████████████████████| 1563/1563 [01:10<00:00, 22.29it/s, loss=0.289, v_num=63, val_loss=0.58, val_acc=0.814]
Epoch 11: 100%|███████████████████████████████████████████████| 1563/1563 [01:10<00:00, 22.08it/s, loss=0.344, v_num=63, val_loss=0.595, val_acc=0.817]
Epoch 12: 100%|███████████████████████████████████████████████| 1563/1563 [01:10<00:00, 22.09it/s, loss=0.337, v_num=63, val_loss=0.601, val_acc=0.816]
Epoch 13: 100%|██████████████████████████████████████████████████| 1563/1563 [01:10<00:00, 22.10it/s, loss=0.28, v_num=63, val_loss=0.6, val_acc=0.817]
Epoch 14: 100%|███████████████████████████████████████████████| 1563/1563 [01:10<00:00, 22.10it/s, loss=0.288, v_num=63, val_loss=0.603, val_acc=0.819]
Epoch 15: 100%|███████████████████████████████████████████████| 1563/1563 [01:10<00:00, 22.10it/s, loss=0.296, v_num=63, val_loss=0.605, val_acc=0.819]
Epoch 16: 100%|███████████████████████████████████████████████| 1563/1563 [01:10<00:00, 22.09it/s, loss=0.252, v_num=63, val_loss=0.604, val_acc=0.819]
do something when training ends███████████████████████████████| 1563/1563 [01:10<00:00, 22.10it/s, loss=0.253, v_num=63, val_loss=0.616, val_acc=0.817]
Epoch 18: 100%|███████████████████████████████████████████████| 1563/1563 [01:10<00:00, 22.13it/s, loss=0.221, v_num=63, val_loss=0.611, val_acc=0.819]
Files already downloaded and verified
Files already downloaded and verified
Testing: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████| 313/313 [00:05<00:00, 54.47it/s]
--------------------------------------------------------------------------------
DATALOADER:0 TEST RESULTS███████████████████████████████████████████████████████████████████████████████████████████ | 310/313 [00:05<00:00, 55.76it/s]
{'val_acc': tensor(0.8030, device='cuda:0'),
 'val_loss': tensor(0.6054, device='cuda:0')}
--------------------------------------------------------------------------------
[{'val_loss': 0.6053957343101501, 'val_acc': 0.8029999732971191}]
elapsed time: 1357.867 [sec]
import argparse
import time
import numpy as np
from torch.utils.data import DataLoader
import pytorch_lightning as pl
from pytorch_lightning import Trainer
import torch.nn as nn
import torch.nn.functional as F
import torch
import torchvision
import torchvision.transforms as transforms
from torchvision.datasets import CIFAR10
import torch.optim as optim
from torchsummary import summary
import matplotlib.pyplot as plt
import tensorboard
#from net_cifar10 import Net_cifar10
from net_vgg16 import VGG16
# functions to show an image
def imshow(img):
    img = img / 2 + 0.5     # unnormalize
    npimg = img.numpy()
    plt.imshow(np.transpose(npimg, (1, 2, 0)))
    plt.pause(1)
    plt.close()
from pytorch_lightning.callbacks import Callback
from pytorch_lightning.callbacks import EarlyStopping, ProgressBar,LearningRateMonitor

class MyPrintingCallback(Callback):
    def on_init_start(self, trainer):
        print('Starting to init trainer!')
    def on_init_end(self, trainer):
        print('Trainer is init now')
    def on_epoch_end(self, trainer, pl_module):
        #print("pl_module = ",pl_module)
        #print("trainer = ",trainer)
        print('')
    def on_train_end(self, trainer, pl_module):
        print('do something when training ends')    
class LitProgressBar(ProgressBar):
    def init_validation_tqdm(self):
        bar = super().init_validation_tqdm()
        bar.set_description('running validation ...')
        return bar
class Net(pl.LightningModule):
    def __init__(self, data_dir='./'):
        super().__init__()
        self.data_dir = data_dir
        # Hardcode some dataset specific attributes
        self.num_classes = 10
        self.dims = (3, 32, 32)
        channels, width, height = self.dims
        self.transform = transforms.Compose([
            transforms.ToTensor(),
             transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
        ])
        #self.net = Net_cifar10()
        self.net = VGG16()
        self.train_acc = pl.metrics.Accuracy()
        self.val_acc = pl.metrics.Accuracy()
        self.test_acc = pl.metrics.Accuracy()
    def forward(self, x):
        return self.net(x)
    def training_step(self, batch, batch_idx):
        x, t =batch
        y = self(x)
        loss = F.cross_entropy(y, t)
        #print('Ir =',self.optimizers().param_groups[0]['lr'])
        self.log('test_loss', loss, on_step = False, on_epoch = True)
        self.log('test_acc', self.val_acc(y, t), on_step = False, on_epoch = True)
        return loss
    def validation_step(self, batch, batch_idx):
        x, t = batch
        y = self(x)
        loss = F.cross_entropy(y, t)
        preds = torch.argmax(y, dim=1)
        # Calling self.log will surface up scalars for you in TensorBoard
        self.log('val_loss', loss, prog_bar=True)
        self.log('val_acc', self.val_acc(y,t), prog_bar=True)
        return loss
    def test_step(self, batch, batch_idx):
        # Here we just reuse the validation_step for testing
        return self.validation_step(batch, batch_idx)
    def configure_optimizers(self):
        #optimizer = optim.SGD(self.parameters(), lr=0.001, momentum=0.9)
        optimizer = optim.Adam(self.parameters(),lr=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0, amsgrad=False)
        #scheduler = {'scheduler': optim.lr_scheduler.LambdaLR(optimizer, lr_lambda = lambda epoch: 0.95 ** epoch)}
        scheduler = {'scheduler': optim.lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.2)}
        print("CF;Ir = ", optimizer.param_groups[0]['lr'])
        return [optimizer], [scheduler]
    def prepare_data(self):
        # download
        CIFAR10(self.data_dir, train=True, download=True)
        CIFAR10(self.data_dir, train=False, download=True)
    def setup(self, stage=None):
        # Assign train/val datasets for use in dataloaders
        if stage == 'fit' or stage is None:
            cifar_full =CIFAR10(self.data_dir, train=True, transform=self.transform)
            n_train = int(len(cifar_full)*0.8)
            n_val = len(cifar_full)-n_train
            self.cifar_train, self.cifar_val = torch.utils.data.random_split(cifar_full, [n_train, n_val])
        # Assign test dataset for use in dataloader(s)
        if stage == 'test' or stage is None:
            self.cifar_test = CIFAR10(self.data_dir, train=False, transform=self.transform)
    def train_dataloader(self):
        #classes = tuple(np.linspace(0, 9, 10, dtype=np.uint8))
        classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
        trainloader = DataLoader(self.cifar_train, batch_size=32)
        # get some random training images
        dataiter = iter(trainloader)
        images, labels = dataiter.next()
        # show images
        imshow(torchvision.utils.make_grid(images))
        # print labels
        print(' '.join('%5s' % classes[labels[j]] for j in range(4)))
        return trainloader
    def val_dataloader(self):
        return DataLoader(self.cifar_val, batch_size=32)
    def test_dataloader(self):
        return DataLoader(self.cifar_test, batch_size=32)
   
def main():
    '''
    main
    '''
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") #for gpu
    # Assuming that we are on a CUDA machine, this should print a CUDA device:
    print(device)
    pl.seed_everything(0)
    # model
    net = Net()
    model = net.to(device)  #for gpu
    summary(model,(3,32,32))
    early_stopping = EarlyStopping('val_acc')  #('val_loss'
    bar = LitProgressBar(refresh_rate = 10, process_position = 1)
    #lr_monitor = LearningRateMonitor(logging_interval='step')

    trainer = pl.Trainer(gpus=1, max_epochs=20,callbacks=[MyPrintingCallback(),early_stopping, bar]) # progress_bar_refresh_rate=10
    trainer.fit(model)
    results = trainer.test()
    print(results)
    
if __name__ == '__main__':
    start_time = time.time()
    main()
    print('elapsed time: {:.3f} [sec]'.format(time.time() - start_time))    
----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
            Conv2d-1           [-1, 64, 32, 32]           1,792
       BatchNorm2d-2           [-1, 64, 32, 32]             128
              ReLU-3           [-1, 64, 32, 32]               0
            Conv2d-4           [-1, 64, 32, 32]          36,928
       BatchNorm2d-5           [-1, 64, 32, 32]             128
              ReLU-6           [-1, 64, 32, 32]               0
         MaxPool2d-7           [-1, 64, 16, 16]               0
            Conv2d-8          [-1, 128, 16, 16]          73,856
       BatchNorm2d-9          [-1, 128, 16, 16]             256
             ReLU-10          [-1, 128, 16, 16]               0
           Conv2d-11          [-1, 128, 16, 16]         147,584
      BatchNorm2d-12          [-1, 128, 16, 16]             256
             ReLU-13          [-1, 128, 16, 16]               0
        MaxPool2d-14            [-1, 128, 8, 8]               0
           Conv2d-15            [-1, 256, 8, 8]         295,168
      BatchNorm2d-16            [-1, 256, 8, 8]             512
             ReLU-17            [-1, 256, 8, 8]               0
           Conv2d-18            [-1, 256, 8, 8]         590,080
      BatchNorm2d-19            [-1, 256, 8, 8]             512
             ReLU-20            [-1, 256, 8, 8]               0
           Conv2d-21            [-1, 256, 8, 8]         590,080
      BatchNorm2d-22            [-1, 256, 8, 8]             512
             ReLU-23            [-1, 256, 8, 8]               0
        MaxPool2d-24            [-1, 256, 4, 4]               0
           Conv2d-25            [-1, 512, 4, 4]       1,180,160
      BatchNorm2d-26            [-1, 512, 4, 4]           1,024
             ReLU-27            [-1, 512, 4, 4]               0
           Conv2d-28            [-1, 512, 4, 4]       2,359,808
      BatchNorm2d-29            [-1, 512, 4, 4]           1,024
             ReLU-30            [-1, 512, 4, 4]               0
           Conv2d-31            [-1, 512, 4, 4]       2,359,808
      BatchNorm2d-32            [-1, 512, 4, 4]           1,024
             ReLU-33            [-1, 512, 4, 4]               0
        MaxPool2d-34            [-1, 512, 2, 2]               0
           Conv2d-35            [-1, 512, 2, 2]       2,359,808
      BatchNorm2d-36            [-1, 512, 2, 2]           1,024
             ReLU-37            [-1, 512, 2, 2]               0
           Conv2d-38            [-1, 512, 2, 2]       2,359,808
      BatchNorm2d-39            [-1, 512, 2, 2]           1,024
             ReLU-40            [-1, 512, 2, 2]               0
           Conv2d-41            [-1, 512, 2, 2]       2,359,808
      BatchNorm2d-42            [-1, 512, 2, 2]           1,024
             ReLU-43            [-1, 512, 2, 2]               0
        MaxPool2d-44            [-1, 512, 1, 1]               0
           Linear-45                  [-1, 512]         262,656
             ReLU-46                  [-1, 512]               0
           Linear-47                   [-1, 32]          16,416
             ReLU-48                   [-1, 32]               0
           Linear-49                   [-1, 10]             330
================================================================
Total params: 15,002,538
Trainable params: 15,002,538
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.01
Forward/backward pass size (MB): 6.57
Params size (MB): 57.23
Estimated Total Size (MB): 63.82
----------------------------------------------------------------
Ir =  0.00025
[1,   200] loss: 1.946  train_acc: 31.54 % val_acc: 31.29 %
[1,   400] loss: 1.691  train_acc: 36.00 % val_acc: 35.82 %
[1,   600] loss: 1.570  train_acc: 36.58 % val_acc: 36.43 %
...
[20,   800] loss: 0.017  train_acc: 99.66 % val_acc: 83.27 %
[20,  1000] loss: 0.016  train_acc: 99.61 % val_acc: 83.11 %
[20,  1200] loss: 0.014  train_acc: 99.61 % val_acc: 83.11 %
Finished Training
Accuracy: 83.27 %
GroundTruth:    cat  ship  ship plane
Predicted:    cat  ship  ship plane
Accuracy of plane : 84 %
Accuracy of   car : 91 %
Accuracy of  bird : 75 %
Accuracy of   cat : 66 %
Accuracy of  deer : 81 %
Accuracy of   dog : 78 %
Accuracy of  frog : 85 %
Accuracy of horse : 85 %
Accuracy of  ship : 94 %
Accuracy of truck : 92 %
elapsed time: 4545.419 [sec]
        MaxPool2d-44            [-1, 512, 1, 1]               0
           Linear-45                  [-1, 512]         262,656
             ReLU-46                  [-1, 512]               0
          Dropout-47                  [-1, 512]               0
           Linear-48                   [-1, 32]          16,416
             ReLU-49                   [-1, 32]               0
          Dropout-50                   [-1, 32]               0
           Linear-51                   [-1, 10]             330
================================================================
Total params: 15,002,538
Trainable params: 15,002,538
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.01
Forward/backward pass size (MB): 6.58
Params size (MB): 57.23
Estimated Total Size (MB): 63.82
----------------------------------------------------------------
Ir =  0.001
Ir =  0.00025
[1,   200] loss: 2.173  Accuracy: 16.72 %
[1,   400] loss: 2.036  Accuracy: 19.80 %
[1,   600] loss: 1.962  Accuracy: 22.53 %
[1,   800] loss: 1.892  Accuracy: 26.34 %
...
[20,   800] loss: 0.418  Accuracy: 75.94 %
[20,  1000] loss: 0.433  Accuracy: 75.89 %
[20,  1200] loss: 0.429  Accuracy: 75.61 %
Finished Training
Accuracy: 76.10 %
GroundTruth:    cat  ship  ship plane
Predicted:    cat  ship  ship  ship
Accuracy of plane : 76 %
Accuracy of   car : 90 %
Accuracy of  bird : 61 %
Accuracy of   cat : 46 %
Accuracy of  deer : 69 %
Accuracy of   dog : 62 %
Accuracy of  frog : 85 %
Accuracy of horse : 82 %
Accuracy of  ship : 91 %
Accuracy of truck : 88 %
elapsed time: 1903.856 [sec]
----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
            Conv2d-1            [-1, 6, 28, 28]             456
         MaxPool2d-2            [-1, 6, 14, 14]               0
            Conv2d-3           [-1, 16, 10, 10]           2,416
         MaxPool2d-4             [-1, 16, 5, 5]               0
            Linear-5                  [-1, 120]          48,120
            Linear-6                   [-1, 84]          10,164
            Linear-7                   [-1, 10]             850
================================================================
Total params: 62,006
Trainable params: 62,006
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.01
Forward/backward pass size (MB): 0.06
Params size (MB): 0.24
Estimated Total Size (MB): 0.31
----------------------------------------------------------------
Ir =  0.00025
[1,   200] loss: 2.126  train_acc: 29.71 % val_acc: 29.66 %
[1,   400] loss: 1.889  train_acc: 33.12 % val_acc: 33.43 %
[1,   600] loss: 1.801  train_acc: 35.55 % val_acc: 35.70 %
...
[20,   800] loss: 1.156  train_acc: 59.33 % val_acc: 55.87 %
[20,  1000] loss: 1.133  train_acc: 59.28 % val_acc: 55.71 %
[20,  1200] loss: 1.167  train_acc: 59.23 % val_acc: 55.81 %
Finished Training
Accuracy: 56.42 %
GroundTruth:    cat  ship  ship plane
Predicted:    cat   car   car  ship
Accuracy of plane : 65 %
Accuracy of   car : 74 %
Accuracy of  bird : 40 %
Accuracy of   cat : 36 %
Accuracy of  deer : 36 %
Accuracy of   dog : 45 %
Accuracy of  frog : 69 %
Accuracy of horse : 63 %
Accuracy of  ship : 73 %
Accuracy of truck : 57 %
elapsed time: 1277.975 [sec]
----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
            Conv2d-1           [-1, 64, 32, 32]           1,792
            Conv2d-2           [-1, 64, 32, 32]          36,928
         MaxPool2d-3           [-1, 64, 16, 16]               0
            Conv2d-4          [-1, 128, 16, 16]          73,856
            Conv2d-5          [-1, 128, 16, 16]         147,584
         MaxPool2d-6            [-1, 128, 8, 8]               0
            Conv2d-7            [-1, 256, 8, 8]         295,168
            Conv2d-8            [-1, 256, 8, 8]         590,080
            Conv2d-9            [-1, 256, 8, 8]         590,080
           Conv2d-10            [-1, 256, 8, 8]         590,080
        MaxPool2d-11            [-1, 256, 4, 4]               0
           Linear-12                 [-1, 1024]       4,195,328
           Linear-13                 [-1, 1024]       1,049,600
           Linear-14                   [-1, 10]          10,250
================================================================
Total params: 7,580,746
Trainable params: 7,580,746
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.01
Forward/backward pass size (MB): 2.23
Params size (MB): 28.92
Estimated Total Size (MB): 31.16
----------------------------------------------------------------
Ir =  0.00025
Accuracy: 79.23 %
GroundTruth:    cat  ship  ship plane
Predicted:    cat  ship  ship plane
Accuracy of plane : 78 %
Accuracy of   car : 90 %
Accuracy of  bird : 72 %
Accuracy of   cat : 64 %
Accuracy of  deer : 72 %
Accuracy of   dog : 69 %
Accuracy of  frog : 82 %
Accuracy of horse : 83 %
Accuracy of  ship : 88 %
Accuracy of truck : 93 %
elapsed time: 1068.527 [sec]
----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
            Conv2d-1          [-1, 256, 28, 28]          19,456
         MaxPool2d-2          [-1, 256, 14, 14]               0
       BatchNorm2d-3          [-1, 256, 14, 14]             512
            Conv2d-4          [-1, 512, 10, 10]       3,277,312
         MaxPool2d-5            [-1, 512, 5, 5]               0
       BatchNorm2d-6            [-1, 512, 5, 5]           1,024
            Conv2d-7           [-1, 1924, 4, 4]       3,942,276
         MaxPool2d-8           [-1, 1924, 2, 2]               0
       BatchNorm2d-9           [-1, 1924, 2, 2]           3,848
           Linear-10                  [-1, 160]       1,231,520
           Linear-11                   [-1, 10]           1,610
================================================================
Total params: 8,477,558
Trainable params: 8,477,558
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.01
Forward/backward pass size (MB): 3.24
Params size (MB): 32.34
Estimated Total Size (MB): 35.59
----------------------------------------------------------------
Ir =  0.00025
[1,   200] loss: 1.651  train_acc: 49.06 % val_acc: 47.93 %
[1,   400] loss: 1.375  train_acc: 58.22 % val_acc: 55.22 %
[1,   600] loss: 1.222  train_acc: 62.61 % val_acc: 59.38 %
...
[20,   800] loss: 0.000  train_acc: 100.00 % val_acc: 79.74 %
[20,  1000] loss: 0.000  train_acc: 100.00 % val_acc: 79.77 %
[20,  1200] loss: 0.000  train_acc: 100.00 % val_acc: 79.79 %
Finished Training
Accuracy: 80.05 %
GroundTruth:    cat  ship  ship plane
Predicted:    cat  ship  ship plane
Accuracy of plane : 85 %
Accuracy of   car : 93 %
Accuracy of  bird : 73 %
Accuracy of   cat : 62 %
Accuracy of  deer : 74 %
Accuracy of   dog : 68 %
Accuracy of  frog : 88 %
Accuracy of horse : 86 %
Accuracy of  ship : 89 %
Accuracy of truck : 88 %
elapsed time: 3917.718 [sec]

----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
            Conv2d-1          [-1, 256, 28, 28]          19,456
         MaxPool2d-2          [-1, 256, 14, 14]               0
       BatchNorm2d-3          [-1, 256, 14, 14]             512
            Conv2d-4          [-1, 512, 10, 10]       3,277,312
         MaxPool2d-5            [-1, 512, 5, 5]               0
       BatchNorm2d-6            [-1, 512, 5, 5]           1,024
            Linear-7                  [-1, 160]       2,048,160
            Linear-8                   [-1, 10]           1,610
================================================================
Total params: 5,348,074
Trainable params: 5,348,074
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.01
Forward/backward pass size (MB): 2.88
Params size (MB): 20.40
Estimated Total Size (MB): 23.30
----------------------------------------------------------------
Ir =  0.00025
[1,   200] loss: 1.654  train_acc: 51.47 % val_acc: 49.53 %
[1,   400] loss: 1.380  train_acc: 59.47 % val_acc: 55.60 %
[1,   600] loss: 1.223  train_acc: 63.02 % val_acc: 58.57 %
...
[20,   800] loss: 0.001  train_acc: 100.00 % val_acc: 77.33 %
[20,  1000] loss: 0.001  train_acc: 100.00 % val_acc: 77.37 %
[20,  1200] loss: 0.001  train_acc: 100.00 % val_acc: 77.42 %
Finished Training
Accuracy: 77.37 %
GroundTruth:    cat  ship  ship plane
Predicted:    cat  ship  ship plane
Accuracy of plane : 84 %
Accuracy of   car : 89 %
Accuracy of  bird : 65 %
Accuracy of   cat : 51 %
Accuracy of  deer : 71 %
Accuracy of   dog : 65 %
Accuracy of  frog : 85 %
Accuracy of horse : 83 %
Accuracy of  ship : 88 %
Accuracy of truck : 90 %
elapsed time: 3419.362 [sec]

Recommended Posts

[Introduction to pytorch-lightning] First Lit ♬
Introduction to Scrapy (1)
Introduction to Scrapy (3)
Introduction to Supervisor
Introduction to Tkinter 1: Introduction
Introduction to PyQt
Introduction to Scrapy (2)
[Linux] Introduction to Linux
Introduction to Scrapy (4)
Introduction to discord.py (2)
Introduction to discord.py
[Introduction to AWS] The first Lambda is Transcribe ♪
[Introduction to Udemy Python3 + Application] 9. First, print with print
First Maya script introduction
Introduction to Lightning pytorch
Introduction to Web Scraping
Introduction to Nonparametric Bayes
Introduction to EV3 / MicroPython
Introduction to Python language
Introduction to TensorFlow-Image Recognition
Introduction to OpenCV (python)-(2)
Introduction to PyQt4 Part 1
Introduction to Dependency Injection
Introduction to Private Chainer
Introduction to machine learning
AOJ Introduction to Programming Topic # 1, Topic # 2, Topic # 3, Topic # 4
Introduction to electronic paper modules
A quick introduction to pytest-mock
Introduction to dictionary lookup algorithm
Introduction to Monte Carlo Method
Introduction to Python Django (2) Win
Introduction to Cython Writing [Notes]
An introduction to private TensorFlow
Kubernetes Scheduler Introduction to Homebrew
A super introduction to Linux
AOJ Introduction to Programming Topic # 7, Topic # 8
Introduction to Anomaly Detection 1 Basics
Introduction to RDB with sqlalchemy Ⅰ
[Introduction to Systre] Fibonacci Retracement ♬
Introduction to Nonlinear Optimization (I)
Introduction to serial communication [Python]
AOJ Introduction to Programming Topic # 5, Topic # 6
Introduction to Deep Learning ~ Learning Rules ~
[Introduction to Python] <list> [edit: 2020/02/22]
Introduction to Python (Python version APG4b)
An introduction to Python Programming
[Introduction to cx_Oracle] (8th) cx_Oracle 8.0 release
Introduction to discord.py (3) Using voice
An introduction to Bayesian optimization
Deep Reinforcement Learning 1 Introduction to Reinforcement Learning
Super introduction to machine learning
First get used to sending
Introduction to Ansible Part ③'Inventory'
Series: Introduction to cx_Oracle Contents
[Introduction] How to use open3d
Introduction to Python For, While
Introduction to Deep Learning ~ Backpropagation ~
Introduction to Ansible Part ④'Variable'
Introduction to vi command (memorandum)
[Introduction to pytorch-lightning] Autoencoder of MNIST and Cifar10 made from scratch ♬
Introduction to Linux Commands ~ LS-DYNA Edition ~