Solve three-dimensional PDEs with deep learning.

Environment and environment construction

Python == 3.6.8 TensorFlow == 1.15.3

This time, I developed the code using version 1 (TF1) of TensorFlow. TF1 only works with Python 3.6, so I installed Python 3.6.8 first. Install Numpy, Scipy, matplotlib, pyDOE from PyPI (pip command).

Prerequisites

This time we will solve the diffusion equation. The diffusion equation is u_t - (u_{xx} + u_{yy})=0 The following Gaussian is adopted as the initial condition. u(x,y,0)=exp(-(x^2+y^2))

Gaussian has the following local solution.

#Data generation-----------------------------------
xi = np.linspace(-5, 5, 100)
yi = np.linspace(-5, 5, 100)
X, Y = np.meshgrid(xi, yi)
ui = np.exp(-(X**2 + Y**2))

tti = np.zeros(10000)[:,None]
xxi = X.flatten()[:,None]
yyi = Y.flatten()[:,None]
uui = ui.flatten()[:,None]

x_initial = np.hstack([tti, xxi, yyi])
u_initial = uui

#plotting style-----------------------------------
fig = plt.figure(figsize = (8, 8))
ax = fig.add_subplot(111, projection="3d")
ax.plot_surface(X, Y, ui, cmap = "rainbow")
ax.set_xlabel("x")
ax.set_ylabel("y")
ax.set_zlabel("u")
plt.show()

download.png

It suffices if a solution that spreads this is obtained.

Source code

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import scipy.io
from scipy.interpolate import griddata
from pyDOE import lhs
from mpl_toolkits.mplot3d import Axes3D
import time
import matplotlib.gridspec as gridspec
from mpl_toolkits.axes_grid1 import make_axes_locatable
import matplotlib.animation as animation

#Fixed randomly generated value---------------------------------
np.random.seed(1234)
tf.set_random_seed(1234)

class PhysicsInformedNN:

    #Function to be executed when an instance is created
    def __init__(self, X_u, u, X_f, layers, lb, ub):
        self.lb = lb
        self.ub = ub
        self.t_u = X_u[:,0:1]
        self.x_u = X_u[:,1:2]
        self.y_u = X_u[:,2:3]
        self.t_f = X_f[:,0:1]
        self.x_f = X_f[:,1:2]
        self.y_f = X_f[:,2:3]
        self.u = u
        self.layers = layers
        self.weights, self.biases = self.initialize_NN(layers)
        self.sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True, log_device_placement=True))
        
        self.t_u_tf = tf.placeholder(tf.float32, shape=[None, self.t_u.shape[1]])
        self.x_u_tf = tf.placeholder(tf.float32, shape=[None, self.x_u.shape[1]])  
        self.y_u_tf = tf.placeholder(tf.float32, shape=[None, self.y_u.shape[1]])       
        self.u_tf = tf.placeholder(tf.float32, shape=[None, self.u.shape[1]])
        self.t_f_tf = tf.placeholder(tf.float32, shape=[None, self.t_f.shape[1]])
        self.x_f_tf = tf.placeholder(tf.float32, shape=[None, self.x_f.shape[1]])
        self.y_f_tf = tf.placeholder(tf.float32, shape=[None, self.y_f.shape[1]])
        self.u_pred = self.net_u(self.t_u_tf, self.x_u_tf, self.y_u_tf) 
        self.f_pred = self.net_f(self.t_f_tf, self.x_f_tf, self.y_f_tf)  
        
        self.loss = tf.reduce_mean(tf.square(self.u_tf - self.u_pred)) + \
                    tf.reduce_mean(tf.square(self.f_pred))    
        self.optimizer = tf.contrib.opt.ScipyOptimizerInterface(self.loss, method = 'L-BFGS-B', 
                                                                options = {'maxiter': 50000,
                                                                           'maxfun': 50000,
                                                                           'maxcor': 50,
                                                                           'maxls': 50,
                                                                           'ftol' : 1.0 * np.finfo(float).eps})
        init = tf.global_variables_initializer()
        self.sess.run(init)

    #Initial weight and bias generation
    def initialize_NN(self, layers):
        weights = []
        biases = []
        num_layers = len(layers)
        for l in range(0, num_layers-1):
            W = self.xavier_init(size=[layers[l], layers[l+1]])
            b = tf.Variable(tf.zeros([1,layers[l+1]], dtype=tf.float32), dtype=tf.float32)
            weights.append(W)
            biases.append(b)
        return weights, biases
    
    #Generates a random initial value of weight that follows a truncated normal distribution
    def xavier_init(self, size):
        in_dim = size[0]
        out_dim = size[1]
        xavier_stddev = np.sqrt(2/(in_dim + out_dim))
        return tf.Variable(tf.truncated_normal([in_dim, out_dim], stddev=xavier_stddev), dtype=tf.float32)
    
    #Building a neural network
    def neural_net(self, X, weights, biases):
        num_layers = len(weights) + 1
        H = 2.0*(X - self.lb)/(self.ub - self.lb) - 1.0
        for l in range(0, num_layers-2):
            W = weights[l]
            b = biases[l]
            H = tf.tanh(tf.add(tf.matmul(H, W), b))
        W = weights[-1]
        b = biases[-1]
        return tf.add(tf.matmul(H, W), b)

    #Neural network of output u
    def net_u(self, t, x, y):
        return self.neural_net(tf.concat([t,x, y],1), self.weights, self.biases)
    
    #Neural network of output f(Automatic differentiation)
    def net_f(self, t, x, y):
        u = self.net_u(t, x, y)
        u_t = tf.gradients(u, t)[0]
        u_x = tf.gradients(u, x)[0]
        u_xx = tf.gradients(u_x, x)[0]
        u_y = tf.gradients(u, y)[0]
        u_yy = tf.gradients(u_y, y)[0]
        #>>>>>>>>The method you want to solve::::::::::::::::::::::::::::::::
        return u_t - u_xx - u_yy

    #Callback function definition
    def callback(self, loss):
        print('Loss:', loss)

    #Neural network training
    def train(self):
        tf_dict = {self.x_u_tf: self.x_u,
                   self.t_u_tf: self.t_u,
                   self.y_u_tf: self.y_u,
                   self.u_tf: self.u,
                   self.x_f_tf: self.x_f,
                   self.t_f_tf: self.t_f,
                   self.y_f_tf: self.y_f}
        self.optimizer.minimize(self.sess, feed_dict = tf_dict,
                                fetches = [self.loss], loss_callback = self.callback)

    #Output u grid points(X_star)Assign the value of to a variable
    def predict(self, X_star):
        return self.sess.run(self.u_pred, {self.t_u_tf: X_star[:,0:1], 
                                           self.x_u_tf: X_star[:,1:2], 
                                           self.y_u_tf: X_star[:,2:3]})

if __name__ == "__main__":

    #>>>>>>>Configuration--------------------------------------------------
    N_u = 1000   #Number of training data for initial conditions and boundary conditions
    N_f = 30000  #Number of collocation points
    x0 = -5      #Starting point of x
    x1 = 5       #End of x
    y0 = -5      #Starting point of y
    y1 = 5       #End of y
    t0 = 0       #Starting point of t
    t1 = 1       #End point of t
    layers = [3, 20, 20, 20, 20, 20, 20, 20, 20, 1] #Structure of NN
    N = 200      #x,Number of divisions of y
    Nt = 100     #Number of divisions of t
    #>>>>>>>Configuration--------------------------------------------------

    #Initial conditions------------------------------------------------------
    xi = np.linspace(x0, x1, N)
    yi = np.linspace(y0, y1, N)
    Xi, Yi = np.meshgrid(xi, yi)
    ui = np.exp(-(Xi**2 + Yi**2))

    tti = np.zeros(N*N)[:,None]
    xxi = Xi.flatten()[:,None]
    yyi = Yi.flatten()[:,None]
    uui = ui.flatten()[:,None]

    X_u_train = np.hstack([tti, xxi, yyi])
    u_train = uui

    #Extract as many initial condition data as Nu----------------------------------
    idx = np.random.choice(X_u_train.shape[0], N_u, replace=False)
    X_u_train = X_u_train[idx, :]
    u_train = u_train[idx,:]

    #Generation of 3D coordinate grid points---------------------------------------------
    x = np.linspace(x0, x1, N)
    y = np.linspace(y0, y1, N)
    t = np.linspace(t0, t1, Nt)
    X, Y, T = np.meshgrid(x, y, t)
    
    tt = T.flatten()[:,None]
    xx = X.flatten()[:,None]
    yy = Y.flatten()[:,None]
    X_star = np.hstack([tt, xx, yy])
    
    #Generation of collocation points----------------------------------------
    lb = np.array([t0, x0, y0])  #<lower bound>
    ub = np.array([t1, x1, y1])  #<upper bound>
    X_f_train = lb + (ub-lb)*lhs(3, N_f)
    X_f_train = np.vstack((X_f_train, X_u_train))

    #Pass data to the PhysicsInformedNN class------------------------------
    model = PhysicsInformedNN(X_u_train, u_train, X_f_train, layers, lb, ub)
    
    #Execution of operation-------------------------------------------------------
    start_time = time.time()
    model.train()
    run_time = time.time() - start_time
    print('Training time:', run_time)
    
    #Store the operation result in a variable--------------------------------------------
    u_pred = model.predict(X_star)

    #Plotting style-----------------------------------------------
    ims = []    #gif animation storage box
    fig = plt.figure()
    for j in range(Nt):
        U = []
        for i in range(N*N):
            U = np.append(U, u_pred[Nt*i + j])
        U = U.reshape(N, N)
        im = plt.imshow(U,interpolation='nearest', extent=[x0, x1, y0, y1],
                        cmap='rainbow', vmin=0, vmax=1)
        ims.append([im])
    ani = animation.ArtistAnimation(fig, ims, interval=50)
    plt.colorbar()
    ani.save("output.gif", writer="imagemagick")
    plt.show()

Execution result

The following gif animation was obtained.

output.gif

Execution result in another equation

The advection equation was solved as another equation. Equation: $ u_t --u_x -u_y = 0 $ Initial condition: $ u (x, y, 0) = exp (-(x ^ 2 + y ^ 2)) $

c=1,t=1.gif

reference

I referred to the following papers. Physics Informed Deep Learning (Part I): Data-driven Solutions of Nonlinear Partial Differential Equations

Recommended Posts

Solve three-dimensional PDEs with deep learning.
Try deep learning with TensorFlow
Deep Kernel Learning with Pyro
Try Deep Learning with FPGA
Generate Pokemon with Deep Learning
Try Deep Learning with FPGA-Select Cucumbers
Cat breed identification with deep learning
Try deep learning with TensorFlow Part 2
Check squat forms with deep learning
Categorize news articles with deep learning
Forecasting Snack Sales with Deep Learning
Deep Learning
Make people smile with Deep Learning
Classify anime faces with deep learning with Chainer
Try with Chainer Deep Q Learning --Launch
Try deep learning of genomics with Kipoi
Sentiment analysis of tweets with deep learning
Deep Learning Memorandum
Start Deep learning
Python Deep Learning
Deep learning × Python
The story of doing deep learning with TPU
99.78% accuracy with deep learning by recognizing handwritten hiragana
First Deep Learning ~ Struggle ~
Learning Python with ChemTHEATER 03
A story about predicting exchange rates with Deep Learning
Solve AtCoder 167 with python
Learning Python with ChemTHEATER 05-1
Python: Deep Learning Practices
Deep learning / activation functions
Deep Learning from scratch
Deep learning 1 Practice of deep learning
Deep learning / cross entropy
First Deep Learning ~ Preparation ~
Solve Sudoku with Python
First Deep Learning ~ Solution ~
[AI] Deep Metric Learning
Learning Python with ChemTHEATER 02
I tried deep learning
Learning Python with ChemTHEATER 01
Solve Sudoku with PuLP
Extract music features with Deep Learning and predict tags
Classify anime faces by sequel / deep learning with Keras
Python: Deep Learning Tuning
Deep learning large-scale technology
Solve POJ 2386 with python
Deep learning / softmax function
Try to build a deep learning / neural network with scratch
Create an environment for "Deep Learning from scratch" with Docker
(Now) Build a GPU Deep Learning environment with GeForce GTX 960
Recognize your boss and hide the screen with Deep Learning
[Deep learning] Image classification with convolutional neural network [DW day 4]
I captured the Touhou Project with Deep Learning ... I wanted to.
Deep Learning with Shogi AI on Mac and Google Colab
I tried to divide with a deep learning language model
HIKAKIN and Max Murai with live game video and deep learning
Easy deep learning web app with NNC and Python + Flask
Sine curve estimation with self-made deep learning module (python) + LSTM
[Python] Solve equations with sympy
Machine learning learned with Pokemon
Solve AtCoder ABC166 with python